Small tool grinding of the large aperture segment mirror based on six axis robotic arm

Zibo Jiang, Xinnan Li, Bo Li, Zhe Chen, Kunxin Chen, Fengpu Wang
{"title":"Small tool grinding of the large aperture segment mirror based on six axis robotic arm","authors":"Zibo Jiang, Xinnan Li, Bo Li, Zhe Chen, Kunxin Chen, Fengpu Wang","doi":"10.1117/12.3007785","DOIUrl":null,"url":null,"abstract":"The splicing sub mirrors of the Thirty Meter Telescope(TMT) primary mirror are off-axis aspheric shapes with large aspheric value. In order to reduce the time of stressed mirror annular polishing(SMAP), the mirror surface will be fine grinding using computer numerical control (CNC) processing device based on a six axis robotic arm before SMAP process, and the segment mirror will be lapping quickly benefit by high removal efficiency of fine grinding compared to polishing. In this article the principles of CNC processing, robotic arm motion controlling, and the experiment of fine grinding removal function are introduced. Finally, the segment mirror of TMT at the out edge is processed, and the fabrication convergence curve and final surface residual distribution are obtained. The optimized machining experience can further shorten the processing time and be used for early aspheric process of segments.","PeriodicalId":502341,"journal":{"name":"Applied Optics and Photonics China","volume":"85 ","pages":"129640L - 129640L-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The splicing sub mirrors of the Thirty Meter Telescope(TMT) primary mirror are off-axis aspheric shapes with large aspheric value. In order to reduce the time of stressed mirror annular polishing(SMAP), the mirror surface will be fine grinding using computer numerical control (CNC) processing device based on a six axis robotic arm before SMAP process, and the segment mirror will be lapping quickly benefit by high removal efficiency of fine grinding compared to polishing. In this article the principles of CNC processing, robotic arm motion controlling, and the experiment of fine grinding removal function are introduced. Finally, the segment mirror of TMT at the out edge is processed, and the fabrication convergence curve and final surface residual distribution are obtained. The optimized machining experience can further shorten the processing time and be used for early aspheric process of segments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于六轴机械臂的大孔径段镜面小工具磨削技术
三十米望远镜(TMT)主镜的拼接副镜是离轴非球面形状,非球面值较大。为了缩短受力镜面环形抛光(SMAP)的时间,在SMAP工序之前,将使用基于六轴机械臂的计算机数控(CNC)加工设备对镜面进行精磨,由于精磨的去除效率比抛光高,分段镜面将很快被研磨。本文介绍了 CNC 加工原理、机械臂运动控制以及精磨去除功能实验。最后,对 TMT 外边缘的分段镜面进行了加工,得到了加工收敛曲线和最终表面残余分布。优化后的加工经验可进一步缩短加工时间,并可用于早期的分段非球面加工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nuclear materials using portable laser-induced plasma spectroscopy 1319 nm single-frequency injection seeded Q-switched laser based on ramp-hold-fire Interference lithography based on a phase mask for the fabrication of diffraction gratings Busyness level-based deep reinforcement learning method for routing, modulation, and spectrum assignment of elastic optical networks Research on A/D driver circuit level nonuniformity correction technology based on machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1