Temperature-insensitive polarization mode converter based on thin-film periodically-poled lithium niobate

Ting Hao, Rongjin Zhuang, Jinlong Lu, Zhihao Li, Dennis Zhou, Guijun Ji, Xinglong Wang
{"title":"Temperature-insensitive polarization mode converter based on thin-film periodically-poled lithium niobate","authors":"Ting Hao, Rongjin Zhuang, Jinlong Lu, Zhihao Li, Dennis Zhou, Guijun Ji, Xinglong Wang","doi":"10.1117/12.3006111","DOIUrl":null,"url":null,"abstract":"Periodically poled lithium niobate (PPLN) is a promising platform for realizing high-speed active polarization mode conversion. Especially, the development of thin-film PPLN techniques drives related devices to lower power consumption, higher performance and more integration. However, the wavelength shifting with the temperature variation is still a problem that brings instability and impedes modulation efficiency. In this paper, we first analyzed the temperature characteristics of a well-designed z-cut polarization mode converter based on thin-film PPLN. The simulated modulation voltage is smaller than 5V. Then a temperature-insensitive device was proposed with different coating materials of negative thermo-optic coefficients. Compared to the structure without coating, the wavelength shifting decreases from 0.25nm/°C to 0.07nm/°C, in the meantime, the modulation voltage can still be kept smaller than 5V or even be reduced slightly.","PeriodicalId":502341,"journal":{"name":"Applied Optics and Photonics China","volume":"127 ","pages":"129660V - 129660V-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Periodically poled lithium niobate (PPLN) is a promising platform for realizing high-speed active polarization mode conversion. Especially, the development of thin-film PPLN techniques drives related devices to lower power consumption, higher performance and more integration. However, the wavelength shifting with the temperature variation is still a problem that brings instability and impedes modulation efficiency. In this paper, we first analyzed the temperature characteristics of a well-designed z-cut polarization mode converter based on thin-film PPLN. The simulated modulation voltage is smaller than 5V. Then a temperature-insensitive device was proposed with different coating materials of negative thermo-optic coefficients. Compared to the structure without coating, the wavelength shifting decreases from 0.25nm/°C to 0.07nm/°C, in the meantime, the modulation voltage can still be kept smaller than 5V or even be reduced slightly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于薄膜周期性极化铌酸锂的温度敏感型极化模式转换器
周期性极化铌酸锂(PPLN)是实现高速主动极化模式转换的一个前景广阔的平台。特别是薄膜 PPLN 技术的发展推动了相关器件向更低功耗、更高性能和更高集成度的方向发展。然而,随温度变化而产生的波长偏移仍然是一个带来不稳定性和阻碍调制效率的问题。本文首先分析了基于薄膜 PPLN 的精心设计的 z 切偏振模转换器的温度特性。模拟调制电压小于 5V。然后,我们提出了一种对温度不敏感的器件,该器件采用了不同的负热光系数涂层材料。与无涂层结构相比,波长偏移从 0.25nm/°C 减小到 0.07nm/°C,同时调制电压仍可保持小于 5V,甚至略有降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nuclear materials using portable laser-induced plasma spectroscopy 1319 nm single-frequency injection seeded Q-switched laser based on ramp-hold-fire Interference lithography based on a phase mask for the fabrication of diffraction gratings Busyness level-based deep reinforcement learning method for routing, modulation, and spectrum assignment of elastic optical networks Research on A/D driver circuit level nonuniformity correction technology based on machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1