The many ways to Transparency

Roberto Cruz Romero
{"title":"The many ways to Transparency","authors":"Roberto Cruz Romero","doi":"10.51915/ret.286","DOIUrl":null,"url":null,"abstract":"This article explores a sample of the literature on transparency in the 1984-2020 period through a systematic review. The sample consists of 242 works (articles, books, and book chapters) collected from different academic databases. Latent dirichlet allocation (LDA) probabilistic topic modelling – an unsupervised machine learning approach – is employed in order to classify and construct a typology of topics within the literature. This approach is complemented by a structured overview of the varieties of transparency framework and is aimed at addressing three research questions: a) What analytical approaches are identified in the literature? b) How is transparency conceptualised through such analytical approaches? And, c) where has transparency’s focus been placed in relation to an event-process framework? The findings show unequal methodological approaches, topics, and issues investigated. These insights and the novel approach utilised outline key challenges and opportunities for future transparency research.","PeriodicalId":509929,"journal":{"name":"Revista Española de la Transparencia","volume":"286 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Española de la Transparencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51915/ret.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores a sample of the literature on transparency in the 1984-2020 period through a systematic review. The sample consists of 242 works (articles, books, and book chapters) collected from different academic databases. Latent dirichlet allocation (LDA) probabilistic topic modelling – an unsupervised machine learning approach – is employed in order to classify and construct a typology of topics within the literature. This approach is complemented by a structured overview of the varieties of transparency framework and is aimed at addressing three research questions: a) What analytical approaches are identified in the literature? b) How is transparency conceptualised through such analytical approaches? And, c) where has transparency’s focus been placed in relation to an event-process framework? The findings show unequal methodological approaches, topics, and issues investigated. These insights and the novel approach utilised outline key challenges and opportunities for future transparency research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现透明的多种途径
本文通过系统回顾的方式,探讨了 1984-2020 年间有关透明度的文献样本。样本包括从不同学术数据库中收集的 242 篇作品(文章、书籍和书籍章节)。为了对文献中的主题进行分类和构建类型学,本文采用了潜在德里赫利分配(LDA)概率主题建模--一种无监督的机器学习方法。这种方法辅以对各种透明度框架的结构性概述,旨在解决三个研究问题:a) 文献中确定了哪些分析方法?c) 透明度的重点与事件-过程框架的关系如何?研究结果表明,调查的方法、主题和问题不尽相同。这些见解和所采用的新方法为未来的透明度研究勾勒出了关键的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
¿Hacia una nueva cultura de la participación en el ámbito local? Garantías adecuadas para proteger la democracia frente al uso fraudulento de los datos personales El acceso a los fondos de los archivos en la nueva Ley de Memoria Democrática Hacia una metodología para evaluar la transparencia en las páginas web de gobiernos locales argentinos Diez años de la aprobación de la Ley 19/2013
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1