Improved fast Fourier solution based on transport of intensity equation

Hong Cheng, Qihong Liu, Xiaotian Zhu, Hao Sun, Fen Zhang, Chuan Shen
{"title":"Improved fast Fourier solution based on transport of intensity equation","authors":"Hong Cheng, Qihong Liu, Xiaotian Zhu, Hao Sun, Fen Zhang, Chuan Shen","doi":"10.1117/12.3005604","DOIUrl":null,"url":null,"abstract":"The phase recovery algorithm based on the transport of intensity equation uses the fast Fourier solution to calculate the phase from the acquired intensity, but the solution accuracy is not high, and there will be instability caused by zero points and minimum points. Aiming at this problem, An improved fast Fourier solution based on the intensity transfer equation is proposed. By finding a suitable constant value to replace the focused intensity value in the traditional formula, the initial guess solution of the phase is solved; the initial phase and the focused intensity form a new complex amplitude, and then a new intensity differential is obtained in the form of angular spectrum propagation, and then the new The intensity differential of is substituted into the phase solution formula to obtain a new phase, so as to iteratively optimize the phase; when the iteration converges, the exact solution of the phase can be obtained. This solution can bypass the instability caused by the zero point and the minimum value point and has the advantage of high precision. Keywords: Transport of intensity equation, Intensity differential, Iterative optimization, Angular spectrum propagation, Fast Fourier solution, phase recovery.","PeriodicalId":505225,"journal":{"name":"Advanced Imaging and Information Processing","volume":"76 1","pages":"1294202 - 1294202-12"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Imaging and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3005604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The phase recovery algorithm based on the transport of intensity equation uses the fast Fourier solution to calculate the phase from the acquired intensity, but the solution accuracy is not high, and there will be instability caused by zero points and minimum points. Aiming at this problem, An improved fast Fourier solution based on the intensity transfer equation is proposed. By finding a suitable constant value to replace the focused intensity value in the traditional formula, the initial guess solution of the phase is solved; the initial phase and the focused intensity form a new complex amplitude, and then a new intensity differential is obtained in the form of angular spectrum propagation, and then the new The intensity differential of is substituted into the phase solution formula to obtain a new phase, so as to iteratively optimize the phase; when the iteration converges, the exact solution of the phase can be obtained. This solution can bypass the instability caused by the zero point and the minimum value point and has the advantage of high precision. Keywords: Transport of intensity equation, Intensity differential, Iterative optimization, Angular spectrum propagation, Fast Fourier solution, phase recovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强度方程传输的改进型快速傅立叶解法
基于强度传输方程的相位恢复算法使用快速傅立叶解法从获取的强度中计算相位,但解法精度不高,而且会出现零点和最小点导致的不稳定。针对这一问题,提出了一种基于强度传输方程的改进型快速傅立叶解法。通过寻找一个合适的常量值来代替传统公式中的聚焦强度值,求解相位的初始猜测解;初始相位和聚焦强度形成一个新的复振幅,然后以角谱传播的形式得到一个新的强度微分,再将新的强度微分代入相位求解公式,得到一个新的相位,从而对相位进行迭代优化;当迭代收敛时,即可得到相位的精确解。这种求解方法可以避开零点和最小值点引起的不稳定性,具有精度高的优点。关键词强度方程传输、强度微分、迭代优化、角频谱传播、快速傅里叶解、相位恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancement of multimodal imaging of rabbit eyes using optical clearing agents A novel method for direct measurement of spark energy Hybrid compressed light field optimization algorithm based on stochastic gradient descent A two-stage neural network recovering phase from a single-frame phase-shifted hologram Improved fast Fourier solution based on transport of intensity equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1