Depth layer slicing optimization method based on hybrid compressive light field

Qiyang Chen, Tao Chen, Liming Zhu, Zi Wang, G. Lv, Q. Feng
{"title":"Depth layer slicing optimization method based on hybrid compressive light field","authors":"Qiyang Chen, Tao Chen, Liming Zhu, Zi Wang, G. Lv, Q. Feng","doi":"10.1117/12.3007209","DOIUrl":null,"url":null,"abstract":"Compressive light field (CLF) is a promising light field display technology, and the traditional multiplicative CLF limits the number of layers due to the low transmittance of liquid crystals, which results in a small depth of field. Therefore, this paper proposes a three-dimensional display structure with a hybrid CLF. This structure utilizes a semi-transparent and semi-reflective mirror to superimpose two sets of multiplicative CLFs, each of which consists of two identical liquid crystal displays and a uniform backlight. The hybrid CLF has a greater depth of field and higher brightness, further improving image quality. Due to the properties of the hybrid CLF structure and the non-negative tensor (NTF) decomposition algorithm, the reconstructed image can suffer from layered image crosstalk, which leads to image quality degradation. We propose a method to reduce the hybrid CLF layered image crosstalk, and we validate the proposed method through computer simulations and optical experiments.","PeriodicalId":505225,"journal":{"name":"Advanced Imaging and Information Processing","volume":"17 1","pages":"129420D - 129420D-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Imaging and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compressive light field (CLF) is a promising light field display technology, and the traditional multiplicative CLF limits the number of layers due to the low transmittance of liquid crystals, which results in a small depth of field. Therefore, this paper proposes a three-dimensional display structure with a hybrid CLF. This structure utilizes a semi-transparent and semi-reflective mirror to superimpose two sets of multiplicative CLFs, each of which consists of two identical liquid crystal displays and a uniform backlight. The hybrid CLF has a greater depth of field and higher brightness, further improving image quality. Due to the properties of the hybrid CLF structure and the non-negative tensor (NTF) decomposition algorithm, the reconstructed image can suffer from layered image crosstalk, which leads to image quality degradation. We propose a method to reduce the hybrid CLF layered image crosstalk, and we validate the proposed method through computer simulations and optical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合压缩光场的深度层切片优化方法
压缩光场(CLF)是一种前景广阔的光场显示技术,由于液晶的透射率较低,传统的乘法CLF限制了层数,导致景深较小。因此,本文提出了一种混合 CLF 的三维显示结构。这种结构利用半透明和半反射镜来叠加两组乘法 CLF,每组乘法 CLF 由两个相同的液晶显示器和一个均匀的背光组成。混合式 CLF 具有更大的景深和更高的亮度,从而进一步提高了图像质量。由于混合 CLF 结构和非负张量(NTF)分解算法的特性,重建图像可能会出现分层图像串扰,从而导致图像质量下降。我们提出了一种减少混合 CLF 分层图像串扰的方法,并通过计算机模拟和光学实验验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancement of multimodal imaging of rabbit eyes using optical clearing agents A novel method for direct measurement of spark energy Hybrid compressed light field optimization algorithm based on stochastic gradient descent A two-stage neural network recovering phase from a single-frame phase-shifted hologram Improved fast Fourier solution based on transport of intensity equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1