CLASSIFICATION OF BRAIN TUMORS ON MRI IMAGES USING DEEP LEARNING ARCHITECTURES

Samaneh Sarfarazi, Önsen Toygar
{"title":"CLASSIFICATION OF BRAIN TUMORS ON MRI IMAGES USING DEEP LEARNING ARCHITECTURES","authors":"Samaneh Sarfarazi, Önsen Toygar","doi":"10.17780/ksujes.1339884","DOIUrl":null,"url":null,"abstract":"A brain tumor is a dangerous neural illness produced by the strict growth of prison cells in the brain or head. The segmentation, analysis, and separation of unclean tumor parts from Magnetic Resonance Imaging (MRI) images are the main sources of anxiety. To report the segmented MRI images including tumor, the usage of computer-assisted methods is necessary. In this paper, a Convolutional Neural Network (CNN) approach is applied to identify brain cancers in MRI images. Two datasets are used in this study, namely Kaggle Brain MRI database and Figshare Brain MRI database. Models of deep CNN, consisting of VGG16, AlexNet, and ResNet, are utilized to extract deep features. The classification accuracies of the aforementioned Deep Learning (DL) networks are used to measure the efficiencies of the implemented systems. For the Kaggle database, AlexNet achieves 98% accuracy, VGG16 has 97% accuracy and ResNet has 66% accuracy. Among these networks, AlexNet has provided the highest level of accuracy. In the Figshare dataset, AlexNet and VGG16 both achieve 99% accuracy, and ResNet has 96% accuracy. In terms of accuracy, AlexNet and VGG16 outperform ResNet. These performances aid in the early detection of cancers before they cause physical harm such as paralysis and other complications.","PeriodicalId":508025,"journal":{"name":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","volume":"57 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17780/ksujes.1339884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A brain tumor is a dangerous neural illness produced by the strict growth of prison cells in the brain or head. The segmentation, analysis, and separation of unclean tumor parts from Magnetic Resonance Imaging (MRI) images are the main sources of anxiety. To report the segmented MRI images including tumor, the usage of computer-assisted methods is necessary. In this paper, a Convolutional Neural Network (CNN) approach is applied to identify brain cancers in MRI images. Two datasets are used in this study, namely Kaggle Brain MRI database and Figshare Brain MRI database. Models of deep CNN, consisting of VGG16, AlexNet, and ResNet, are utilized to extract deep features. The classification accuracies of the aforementioned Deep Learning (DL) networks are used to measure the efficiencies of the implemented systems. For the Kaggle database, AlexNet achieves 98% accuracy, VGG16 has 97% accuracy and ResNet has 66% accuracy. Among these networks, AlexNet has provided the highest level of accuracy. In the Figshare dataset, AlexNet and VGG16 both achieve 99% accuracy, and ResNet has 96% accuracy. In terms of accuracy, AlexNet and VGG16 outperform ResNet. These performances aid in the early detection of cancers before they cause physical harm such as paralysis and other complications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习架构对 mri 图像上的脑肿瘤进行分类
脑肿瘤是一种危险的神经疾病,由大脑或头部的囚牢细胞严格生长而成。从磁共振成像(MRI)图像中分割、分析和分离不干净的肿瘤部分是令人焦虑的主要原因。要报告包括肿瘤在内的磁共振成像图像分割结果,必须使用计算机辅助方法。本文采用卷积神经网络(CNN)方法来识别核磁共振成像图像中的脑癌。本研究使用了两个数据集,即 Kaggle Brain MRI 数据库和 Figshare Brain MRI 数据库。由 VGG16、AlexNet 和 ResNet 组成的深度 CNN 模型被用来提取深度特征。上述深度学习(DL)网络的分类精度用于衡量所实施系统的效率。在 Kaggle 数据库中,AlexNet 的准确率为 98%,VGG16 的准确率为 97%,ResNet 的准确率为 66%。在这些网络中,AlexNet 的准确率最高。在 Figshare 数据集中,AlexNet 和 VGG16 的准确率都达到了 99%,ResNet 的准确率为 96%。就准确率而言,AlexNet 和 VGG16 优于 ResNet。这些性能有助于在癌症造成身体伤害(如瘫痪和其他并发症)之前对其进行早期检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PİRAZOL TÜREVI BİR BİLEŞİĞİN KURAMSAL HESAPLAMALARI VE HİRSHFELD YÜZEY ANALİZİ GÜNCEL SANATTA BİR ÜRETİM BİÇİMİ OLARAK ÇEKİŞMELİ ÜRETKEN AĞLAR BENTONİT KUM KARIŞIMLARINDA ELASTİK DRENAJSIZ MODUL-SERBEST BASINÇ MUKAVEMETİ İLİŞKİSİ MULTİSPEKTRAL VE HİPERSPEKTRAL GÖRÜNTÜLEME TEKNİKLERİNİN MEYVE - SEBZE İŞLEME TESİSLERİNDE KULLANIM OLANAKLARI A DEEP LEARNING-BASED DEMAND FORECASTING SYSTEM FOR PLANNING ELECTRICITY GENERATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1