Barometric Soft Tactile Sensor for Depth Independent Contact Localization

Leone Costi, Fumiya Iida
{"title":"Barometric Soft Tactile Sensor for Depth Independent Contact Localization","authors":"Leone Costi, Fumiya Iida","doi":"10.1109/ROBIO58561.2023.10354941","DOIUrl":null,"url":null,"abstract":"Soft tactile sensors are a family of versatile flexible sensors aiming to replicate the sense of touch using skin-like artificial systems, with the primary function of contact localization. Such devices can rely on a multitude of physical principles and structural designs. Most implementations exploit contact-induced changes in electrical or optical resistivity, achieving good performance, but strongly limiting the range of usable materials. On the other hand, solutions relying only on structural design and delocalized sensors have yet to be shown able to achieve the same performance. In this paper, we propose a barometric soft tactile sensor that utilizes a grid of sealed cavities and delocalized barometric sensors to perform contact localization independently from the contact depth. Moreover, since the device’s function is not material-specific, we also investigate the role of compliance by testing multiple increasingly softer materials. For each material, we characterize the cavities’ sensing field and then collect the data sets to train and test a multi-layer perceptron regressor for contact localization, both with a constant and variable contact depth. The results show that we are able to lower the contact localization mean error down to 2 mm.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"25 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soft tactile sensors are a family of versatile flexible sensors aiming to replicate the sense of touch using skin-like artificial systems, with the primary function of contact localization. Such devices can rely on a multitude of physical principles and structural designs. Most implementations exploit contact-induced changes in electrical or optical resistivity, achieving good performance, but strongly limiting the range of usable materials. On the other hand, solutions relying only on structural design and delocalized sensors have yet to be shown able to achieve the same performance. In this paper, we propose a barometric soft tactile sensor that utilizes a grid of sealed cavities and delocalized barometric sensors to perform contact localization independently from the contact depth. Moreover, since the device’s function is not material-specific, we also investigate the role of compliance by testing multiple increasingly softer materials. For each material, we characterize the cavities’ sensing field and then collect the data sets to train and test a multi-layer perceptron regressor for contact localization, both with a constant and variable contact depth. The results show that we are able to lower the contact localization mean error down to 2 mm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于深度独立接触定位的气压式软触觉传感器
软触觉传感器是一系列多功能柔性传感器,旨在利用类肤人工系统复制触觉,主要功能是接触定位。这类设备可以依赖多种物理原理和结构设计。大多数实施方案都是利用接触引起的电阻率或光学电阻率变化来实现良好的性能,但却严重限制了可用材料的范围。另一方面,仅依靠结构设计和非局部传感器的解决方案尚未证明能够实现相同的性能。在本文中,我们提出了一种气压式软触觉传感器,它利用网格密封空腔和失焦气压传感器来执行接触定位,而不受接触深度的影响。此外,由于该装置的功能并非针对特定材料,我们还通过测试多种越来越软的材料来研究顺应性的作用。对于每种材料,我们都对空腔的感应场进行了表征,然后收集数据集,在接触深度恒定和可变的情况下,训练和测试用于接触定位的多层感知器回归器。结果表明,我们能够将接触定位的平均误差降低到 2 毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Barometric Soft Tactile Sensor for Depth Independent Contact Localization Stability Margin Based Gait Design on Slopes for a Novel Reconfigurable Quadruped Robot with a Foldable Trunk Blind Walking Balance Control and Disturbance Rejection of the Bipedal Humanoid Robot Xiao-Man via Reinforcement Learning A Closed-Loop Multi-perspective Visual Servoing Approach with Reinforcement Learning Modeling and Analysis of Pipe External Surface Grinding Force using Cup-shaped Wire Brush
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1