Dan Xiong, Yiyong Huang, Yanjie Yang, Hongwei Liu, Zhijie Jiang, Wei Han
{"title":"Research on Horizontal Following Control of a Suspended Robot for Self-Momentum Targets","authors":"Dan Xiong, Yiyong Huang, Yanjie Yang, Hongwei Liu, Zhijie Jiang, Wei Han","doi":"10.1109/ROBIO58561.2023.10354971","DOIUrl":null,"url":null,"abstract":"Micro/low gravity is one of the most prominent features of the outer space environment, and it significantly alters the force state and dynamics of spacecraft or astronauts compared to the Earth’s gravitational environment. It is crucial to simulate the micro/low gravity environment on the ground for astronaut training or spacecraft testing. The suspension method utilizes a pulley and sling mechanism to create a micro-low gravity environment. This method counteracts the gravitational force exerted by the object based on rope tension. The simulation effect greatly depends on the accuracy of the horizontal following system, which serves as the central subsystem of the suspension device. In this paper, we propose a dual-arm following system to solve the issue of horizontal following for self-momentum targets. In addition, we conduct research on adaptive inhibition technology for flexible rope swing, and coupling control between a robotic arm and a crane. Physical experiments are conducted on the robotic system to verify the effectiveness of the proposed approach.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"88 12","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Micro/low gravity is one of the most prominent features of the outer space environment, and it significantly alters the force state and dynamics of spacecraft or astronauts compared to the Earth’s gravitational environment. It is crucial to simulate the micro/low gravity environment on the ground for astronaut training or spacecraft testing. The suspension method utilizes a pulley and sling mechanism to create a micro-low gravity environment. This method counteracts the gravitational force exerted by the object based on rope tension. The simulation effect greatly depends on the accuracy of the horizontal following system, which serves as the central subsystem of the suspension device. In this paper, we propose a dual-arm following system to solve the issue of horizontal following for self-momentum targets. In addition, we conduct research on adaptive inhibition technology for flexible rope swing, and coupling control between a robotic arm and a crane. Physical experiments are conducted on the robotic system to verify the effectiveness of the proposed approach.