Estimation of Deformation for Self-balancing Lower Limb Exoskeleton Only Using Force/Torque Sensors

Ziqiang Chen, Ming Yang, Feng Li, Wentao Li, Jinke Li, Dingkui Tian, Jianquan Sun, Yong He, Xinyu Wu
{"title":"Estimation of Deformation for Self-balancing Lower Limb Exoskeleton Only Using Force/Torque Sensors","authors":"Ziqiang Chen, Ming Yang, Feng Li, Wentao Li, Jinke Li, Dingkui Tian, Jianquan Sun, Yong He, Xinyu Wu","doi":"10.1109/ROBIO58561.2023.10354999","DOIUrl":null,"url":null,"abstract":"This paper presents a general estimation method of deformation for the self-balancing lower limb exoskeleton (SBLLE). In particular, we propose a Bi-LSTM deformation estimator (BLDE) to predict and compensate for the deformation of SBLLE based on the current force and torque data measured by force/torque (F/T) sensors. First, we choose four movements including squatting down and up, waist twisting, left foot lifting, and right foot lifting to mimic the constituent action of walking motion. The deformation data set is obtained through the motion capture analysis system and offline planning trajectories, and the relative F/T data set is obtained by the F/T sensors embedded in the feet of SBLLE. Second, the BiLSTM network is trained to learn the relationship between the deformation and F/T and verified on the test set. After that, BLDE is added to the control system of SBLLE to estimate and compensate for the deformation. Finally, four same movements and the walking experiment are conducted on the exoskeleton AutoLEE-G2 with BLDE. The experimental results have proven that BLDE can predict and compensate for deformation by only using F/T sensors.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"87 6","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a general estimation method of deformation for the self-balancing lower limb exoskeleton (SBLLE). In particular, we propose a Bi-LSTM deformation estimator (BLDE) to predict and compensate for the deformation of SBLLE based on the current force and torque data measured by force/torque (F/T) sensors. First, we choose four movements including squatting down and up, waist twisting, left foot lifting, and right foot lifting to mimic the constituent action of walking motion. The deformation data set is obtained through the motion capture analysis system and offline planning trajectories, and the relative F/T data set is obtained by the F/T sensors embedded in the feet of SBLLE. Second, the BiLSTM network is trained to learn the relationship between the deformation and F/T and verified on the test set. After that, BLDE is added to the control system of SBLLE to estimate and compensate for the deformation. Finally, four same movements and the walking experiment are conducted on the exoskeleton AutoLEE-G2 with BLDE. The experimental results have proven that BLDE can predict and compensate for deformation by only using F/T sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仅使用力/扭矩传感器估算自平衡下肢外骨骼的形变
本文介绍了自平衡下肢外骨骼(SBLLE)的一般变形估计方法。其中,我们提出了一种 Bi-LSTM 形变估算器(BLDE),根据力/力矩(F/T)传感器测量到的当前力和力矩数据来预测和补偿 SBLLE 的形变。首先,我们选择了四个动作,包括下蹲、上蹲、扭腰、左脚抬起和右脚抬起,以模拟行走运动的组成动作。变形数据集通过运动捕捉分析系统和离线规划轨迹获得,相对 F/T 数据集通过嵌入 SBLLE 脚部的 F/T 传感器获得。其次,训练 BiLSTM 网络以学习变形与 F/T 之间的关系,并在测试集上进行验证。然后,将 BLDE 添加到 SBLLE 的控制系统中,以估计和补偿形变。最后,在带有 BLDE 的外骨骼 AutoLEE-G2 上进行了四个相同的动作和行走实验。实验结果证明,仅使用 F/T 传感器,BLDE 就能预测和补偿形变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Barometric Soft Tactile Sensor for Depth Independent Contact Localization Stability Margin Based Gait Design on Slopes for a Novel Reconfigurable Quadruped Robot with a Foldable Trunk Blind Walking Balance Control and Disturbance Rejection of the Bipedal Humanoid Robot Xiao-Man via Reinforcement Learning A Closed-Loop Multi-perspective Visual Servoing Approach with Reinforcement Learning Modeling and Analysis of Pipe External Surface Grinding Force using Cup-shaped Wire Brush
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1