An Industrial Bin Picking Framework for Assembly Tasks

Jizhong Liang, Han Sun, Xinhao Chen, Yuanze Gu, Qixin Cao
{"title":"An Industrial Bin Picking Framework for Assembly Tasks","authors":"Jizhong Liang, Han Sun, Xinhao Chen, Yuanze Gu, Qixin Cao","doi":"10.1109/ROBIO58561.2023.10354772","DOIUrl":null,"url":null,"abstract":"The majority of current bin picking systems, designed for industrial parts, cannot be directly oriented to the downstream task after grasping. This research presents a grasping framework that addresses this challenge by incorporating pose estimation of parts in cluttered bin environments and the targeted design of robot end-effector grippers. This approach ensures that the pose of the part on the gripper is known and fixed, enabling successful assembly tasks in various scenarios. To train an object pose estimation network, we propose a system for generating a dataset of industrial parts using model rendering within a physics engine. We analyze the geometric features of the parts, and further design a gripper, to achieve the grasping strategy. Results demonstrate that for a single known industrial part, the minimum grasping success rate is 91.4% in simulated robot experiments, and the assembly success rates in different scenarios based on this framework exceed 80%. Our framework offers valuable guidance for the deployment of robotic grasping.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"1 3","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of current bin picking systems, designed for industrial parts, cannot be directly oriented to the downstream task after grasping. This research presents a grasping framework that addresses this challenge by incorporating pose estimation of parts in cluttered bin environments and the targeted design of robot end-effector grippers. This approach ensures that the pose of the part on the gripper is known and fixed, enabling successful assembly tasks in various scenarios. To train an object pose estimation network, we propose a system for generating a dataset of industrial parts using model rendering within a physics engine. We analyze the geometric features of the parts, and further design a gripper, to achieve the grasping strategy. Results demonstrate that for a single known industrial part, the minimum grasping success rate is 91.4% in simulated robot experiments, and the assembly success rates in different scenarios based on this framework exceed 80%. Our framework offers valuable guidance for the deployment of robotic grasping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于装配任务的工业垃圾箱拣选框架
目前大多数针对工业零部件设计的料仓分拣系统在抓取后无法直接面向下游任务。本研究提出了一种抓取框架,通过结合杂乱料仓环境中的零件姿态估计和机器人末端执行器抓手的针对性设计来应对这一挑战。这种方法可确保抓手上零件的姿态是已知和固定的,从而在各种情况下成功完成装配任务。为了训练物体姿态估计网络,我们提出了一套系统,利用物理引擎中的模型渲染生成工业零件数据集。我们分析了零件的几何特征,并进一步设计了抓手,以实现抓取策略。结果表明,在模拟机器人实验中,对于单个已知工业零件,最小抓取成功率为 91.4%,而基于该框架的不同场景下的装配成功率超过 80%。我们的框架为机器人抓取的部署提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Barometric Soft Tactile Sensor for Depth Independent Contact Localization Stability Margin Based Gait Design on Slopes for a Novel Reconfigurable Quadruped Robot with a Foldable Trunk Blind Walking Balance Control and Disturbance Rejection of the Bipedal Humanoid Robot Xiao-Man via Reinforcement Learning A Closed-Loop Multi-perspective Visual Servoing Approach with Reinforcement Learning Modeling and Analysis of Pipe External Surface Grinding Force using Cup-shaped Wire Brush
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1