An Universal Dynamic Model Predictive Control Framework for Quadruped Robot Locomotion

Zehua Huang, Ran Huang
{"title":"An Universal Dynamic Model Predictive Control Framework for Quadruped Robot Locomotion","authors":"Zehua Huang, Ran Huang","doi":"10.1109/ROBIO58561.2023.10354635","DOIUrl":null,"url":null,"abstract":"Quadruped Robots require the capability to traverse complex and demanding surroundings found in natural landscapes, urban areas, and industrial facilities. However, achieving efficient and flexible control of these systems remains an ongoing challenge. In this paper, we present a novel Universal Dynamic Model Predictive Control (UDMPC) Framework designed specifically for quadruped robot locomotion, aiming to address the controller design problems caused by the diversity of quadruped robots and the complexity of terrains. Even within intricate terrains, this framework guarantees accurate tracing of reference velocity commands, augmenting locomotion prowess. The MPC controller’s parameters are dynamically fine-tuned through reinforcement learning, enhancing control reliability. Our proposed approach was subjected to rigorous testing and evaluation using the Go1 quadruped robot model within a simulation environment. The findings showcased its exceptional dynamic adaptability, surpassing fixed-parameter controllers. Notably, this work considerably enhances command tracking precision and stability.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"54 6","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quadruped Robots require the capability to traverse complex and demanding surroundings found in natural landscapes, urban areas, and industrial facilities. However, achieving efficient and flexible control of these systems remains an ongoing challenge. In this paper, we present a novel Universal Dynamic Model Predictive Control (UDMPC) Framework designed specifically for quadruped robot locomotion, aiming to address the controller design problems caused by the diversity of quadruped robots and the complexity of terrains. Even within intricate terrains, this framework guarantees accurate tracing of reference velocity commands, augmenting locomotion prowess. The MPC controller’s parameters are dynamically fine-tuned through reinforcement learning, enhancing control reliability. Our proposed approach was subjected to rigorous testing and evaluation using the Go1 quadruped robot model within a simulation environment. The findings showcased its exceptional dynamic adaptability, surpassing fixed-parameter controllers. Notably, this work considerably enhances command tracking precision and stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四足机器人运动的通用动态模型预测控制框架
四足机器人需要有能力穿越自然景观、城市区域和工业设施中复杂而严苛的环境。然而,实现对这些系统的高效、灵活控制仍然是一个持续的挑战。在本文中,我们提出了一个专为四足机器人运动设计的新型通用动态模型预测控制(UDMPC)框架,旨在解决因四足机器人的多样性和地形的复杂性而造成的控制器设计问题。即使在错综复杂的地形中,该框架也能保证准确跟踪参考速度指令,从而增强运动能力。MPC 控制器的参数可通过强化学习进行动态微调,从而提高控制的可靠性。我们提出的方法在模拟环境中使用 Go1 四足机器人模型进行了严格的测试和评估。测试结果表明,该方法具有卓越的动态适应性,超越了固定参数控制器。值得注意的是,这项工作大大提高了指令跟踪精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Barometric Soft Tactile Sensor for Depth Independent Contact Localization Stability Margin Based Gait Design on Slopes for a Novel Reconfigurable Quadruped Robot with a Foldable Trunk Blind Walking Balance Control and Disturbance Rejection of the Bipedal Humanoid Robot Xiao-Man via Reinforcement Learning A Closed-Loop Multi-perspective Visual Servoing Approach with Reinforcement Learning Modeling and Analysis of Pipe External Surface Grinding Force using Cup-shaped Wire Brush
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1