Inertia Estimation of Quadruped Robot under Load and Its Walking Control Strategy in Urban Complex Terrain

Qiang Fu, Muxuan Han, Yunjiang Lou, Ke Li, Zhiyuan Yu
{"title":"Inertia Estimation of Quadruped Robot under Load and Its Walking Control Strategy in Urban Complex Terrain","authors":"Qiang Fu, Muxuan Han, Yunjiang Lou, Ke Li, Zhiyuan Yu","doi":"10.1109/ROBIO58561.2023.10354861","DOIUrl":null,"url":null,"abstract":"When the quadruped robot is engaged in logistics transportation tasks, it encounters a challenge where the distribution of the center of mass (CoM) of the loaded items is not only random but also subject to time variations. Consequently, the robot becomes susceptible to non-zero resultant torques, which inevitably impact its body posture during the walking process. This paper proposes a method to estimate the CoM inertia using four one-dimensional force sensors and a walking control strategy for complex urban terrain. The inertia tensor and CoM of the load are first estimated, then the robot’s dynamics are compensated, and foothold adjustments are made for underactuated orientations to compensate for the extra moment generated by the CoM offset. For uneven terrain, the terrain estimator and event-based gait are used to adjust the robot’s gait to reduce the impact of terrain changes on the robot. The effectiveness of the proposed method and the feasibility of load walking in urban terrain are verified through comparative experiments, complex terrain load walking experiments in Webots, and real prototype experiments.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"69 11","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When the quadruped robot is engaged in logistics transportation tasks, it encounters a challenge where the distribution of the center of mass (CoM) of the loaded items is not only random but also subject to time variations. Consequently, the robot becomes susceptible to non-zero resultant torques, which inevitably impact its body posture during the walking process. This paper proposes a method to estimate the CoM inertia using four one-dimensional force sensors and a walking control strategy for complex urban terrain. The inertia tensor and CoM of the load are first estimated, then the robot’s dynamics are compensated, and foothold adjustments are made for underactuated orientations to compensate for the extra moment generated by the CoM offset. For uneven terrain, the terrain estimator and event-based gait are used to adjust the robot’s gait to reduce the impact of terrain changes on the robot. The effectiveness of the proposed method and the feasibility of load walking in urban terrain are verified through comparative experiments, complex terrain load walking experiments in Webots, and real prototype experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
负载下四足机器人的惯性估计及其在城市复杂地形中的行走控制策略
当四足机器人执行物流运输任务时,会遇到这样一个挑战:装载物品的质心(CoM)分布不仅是随机的,还会受时间变化的影响。因此,机器人在行走过程中很容易受到非零结果扭矩的影响,从而不可避免地影响其身体姿态。本文提出了一种利用四个一维力传感器估算 CoM 惯量的方法,以及针对复杂城市地形的行走控制策略。首先对负载的惯性张量和CoM进行估算,然后对机器人的动力学进行补偿,并对未充分驱动的方向进行立足点调整,以补偿CoM偏移产生的额外力矩。对于不平坦的地形,则使用地形估计器和基于事件的步态来调整机器人的步态,以减少地形变化对机器人的影响。通过对比实验、Webots 中的复杂地形负重行走实验和实际原型实验,验证了所提方法的有效性和在城市地形中负重行走的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Barometric Soft Tactile Sensor for Depth Independent Contact Localization Stability Margin Based Gait Design on Slopes for a Novel Reconfigurable Quadruped Robot with a Foldable Trunk Blind Walking Balance Control and Disturbance Rejection of the Bipedal Humanoid Robot Xiao-Man via Reinforcement Learning A Closed-Loop Multi-perspective Visual Servoing Approach with Reinforcement Learning Modeling and Analysis of Pipe External Surface Grinding Force using Cup-shaped Wire Brush
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1