Uncertainty in Bayesian Reinforcement Learning for Robot Manipulation Tasks with Sparse Rewards

Li Zheng, Yanghong Li, Yahao Wang, Guangrui Bai, Haiyang He, Erbao Dong
{"title":"Uncertainty in Bayesian Reinforcement Learning for Robot Manipulation Tasks with Sparse Rewards","authors":"Li Zheng, Yanghong Li, Yahao Wang, Guangrui Bai, Haiyang He, Erbao Dong","doi":"10.1109/ROBIO58561.2023.10354785","DOIUrl":null,"url":null,"abstract":"This paper aims to explore the application of Bayesian deep reinforcement learning (BDRL) in robot manipulation tasks with sparse rewards, focusing on addressing the uncertainty in complex and sparsely rewarded environments. Conventional deep reinforcement learning (DRL) algorithms still face significant challenges in the context of robot manipulation tasks. To address this issue, this paper proposes a general algorithm framework called BDRL that combines reinforcement learning algorithms with Bayesian networks to quantify the model uncertainty, aleatoric uncertainty in neural networks, and uncertainty in the reward function. The effectiveness and generality of the proposed algorithm are validated through simulation experiments on multiple sets of different sparsely rewarded tasks, employing various advanced DRL algorithms. The research results demonstrate that the DRL algorithm based on the Bayesian network mechanism significantly improves the convergence speed of the algorithms in sparse reward tasks by accurately estimating the model uncertainty.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"48 6","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to explore the application of Bayesian deep reinforcement learning (BDRL) in robot manipulation tasks with sparse rewards, focusing on addressing the uncertainty in complex and sparsely rewarded environments. Conventional deep reinforcement learning (DRL) algorithms still face significant challenges in the context of robot manipulation tasks. To address this issue, this paper proposes a general algorithm framework called BDRL that combines reinforcement learning algorithms with Bayesian networks to quantify the model uncertainty, aleatoric uncertainty in neural networks, and uncertainty in the reward function. The effectiveness and generality of the proposed algorithm are validated through simulation experiments on multiple sets of different sparsely rewarded tasks, employing various advanced DRL algorithms. The research results demonstrate that the DRL algorithm based on the Bayesian network mechanism significantly improves the convergence speed of the algorithms in sparse reward tasks by accurately estimating the model uncertainty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对奖励稀疏的机器人操纵任务的贝叶斯强化学习中的不确定性
本文旨在探索贝叶斯深度强化学习(BDRL)在奖励稀疏的机器人操纵任务中的应用,重点是解决复杂和奖励稀疏环境中的不确定性问题。传统的深度强化学习(DRL)算法在机器人操纵任务中仍面临巨大挑战。为解决这一问题,本文提出了一种名为 BDRL 的通用算法框架,该框架将强化学习算法与贝叶斯网络相结合,以量化模型的不确定性、神经网络的不确定性以及奖励函数的不确定性。本文采用各种先进的 DRL 算法,通过对多组不同的稀疏奖励任务进行模拟实验,验证了所提算法的有效性和通用性。研究结果表明,基于贝叶斯网络机制的 DRL 算法通过准确估计模型的不确定性,显著提高了稀疏奖励任务中算法的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Barometric Soft Tactile Sensor for Depth Independent Contact Localization Stability Margin Based Gait Design on Slopes for a Novel Reconfigurable Quadruped Robot with a Foldable Trunk Blind Walking Balance Control and Disturbance Rejection of the Bipedal Humanoid Robot Xiao-Man via Reinforcement Learning A Closed-Loop Multi-perspective Visual Servoing Approach with Reinforcement Learning Modeling and Analysis of Pipe External Surface Grinding Force using Cup-shaped Wire Brush
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1