Identification and hazard analysis of landslides triggered by earthquakes and rainfall

{"title":"Identification and hazard analysis of landslides triggered by earthquakes and rainfall","authors":"","doi":"10.1016/j.eqrea.2023.100272","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique and Google Earth optical remote sensing images to analyze the area within 20 ​km around the epicenter of a <em>M</em> 3.9, earthquake that occurred in Tanchang County, Gansu Province, on December 28, 2020. The objective is to identify potential earthquake-induced landslides, assess their scale, and determine their impact range. The study results reveal the successful identification of two potential landslides in the 20 ​km radius around the epicenter. Through time-series deformation analysis, it was observed that these potential landslides were significantly influenced by both the earthquake and rainfall. Further estimation of these potential landslides indicates maximum depths of 7.4 ​m and 14.1 ​m for the failure surfaces, with volumes of 9.02 ​× ​10<sup>4</sup> ​m<sup>3</sup> and 25.5 ​× ​10<sup>4</sup> ​m<sup>3</sup>, respectively. Finally, based on the simulation analysis of Massflow software, the maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Shangyaai is 12 ​m, the area of the final accumulation area is 1.75 ​× ​10<sup>4</sup> ​m<sup>2</sup>, and the farthest movement distance is 1124 ​m. The maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Wangshancun is 8 ​m, the area of the final accumulation area is 7.89 ​× ​10<sup>4</sup> ​m<sup>2</sup>, and the farthest movement distance is 742 ​m.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100272"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467023000696/pdfft?md5=ba6a8cdea7cfdae2bd3eb15fba341bad&pid=1-s2.0-S2772467023000696-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467023000696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique and Google Earth optical remote sensing images to analyze the area within 20 ​km around the epicenter of a M 3.9, earthquake that occurred in Tanchang County, Gansu Province, on December 28, 2020. The objective is to identify potential earthquake-induced landslides, assess their scale, and determine their impact range. The study results reveal the successful identification of two potential landslides in the 20 ​km radius around the epicenter. Through time-series deformation analysis, it was observed that these potential landslides were significantly influenced by both the earthquake and rainfall. Further estimation of these potential landslides indicates maximum depths of 7.4 ​m and 14.1 ​m for the failure surfaces, with volumes of 9.02 ​× ​104 ​m3 and 25.5 ​× ​104 ​m3, respectively. Finally, based on the simulation analysis of Massflow software, the maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Shangyaai is 12 ​m, the area of the final accumulation area is 1.75 ​× ​104 ​m2, and the farthest movement distance is 1124 ​m. The maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Wangshancun is 8 ​m, the area of the final accumulation area is 7.89 ​× ​104 ​m2, and the farthest movement distance is 742 ​m.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地震和降雨引发的山体滑坡的识别和危害分析
本研究旨在利用小基线子集干涉合成孔径雷达(SBAS-InSAR)技术和谷歌地球光学遥感图像,分析 2020 年 12 月 28 日在甘肃省宕昌县发生的 M 3.9 级地震震中周围 20 公里内的区域。目的是识别潜在的地震诱发滑坡,评估其规模并确定其影响范围。研究结果表明,在震中周围 20 公里半径范围内成功识别出两处潜在滑坡。通过时间序列变形分析,发现这些潜在滑坡受地震和降雨的影响很大。对这些潜在滑坡的进一步估算表明,崩塌面的最大深度分别为 7.4 米和 14.1 米,体积分别为 9.02 × 104 立方米和 25.5 × 104 立方米。最后,根据 Massflow 软件的模拟分析,上窑潜在滑坡滑动后最终堆积区的最大堆积土厚度为 12 m,最终堆积区面积为 1.75 × 104 m2,最远移动距离为 1124 m。王山村潜在滑坡滑动后最终堆积区最大堆积土厚度为 8 m,最终堆积区面积为 7.89 × 104 m2,最远移动距离为 742 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Site classification methodology using support vector machine: A study Improving image accuracy of ambient noise data by temporary seismic arrays at different observation periods Data merging methods for S-wave velocity and azimuthal anisotropy from different regions Characterization and application of submarine seismic ambient noise in the Bohai Sea and Yellow Sea Rapid determination of source parameters of the M6.2 Jishishan earthquake in Gansu Province and its application in emergency response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1