{"title":"Spontaneous symmetry breaking as a law of nature","authors":"Isaac Bersuker","doi":"10.19261/cjm.2023.1098","DOIUrl":null,"url":null,"abstract":"In a semi-review paper, it was discussed the notion of symmetry of polyatomic systems defined as invariance under transformations, and show that this important property of atomic matter is extremely vulnerable, and may undergo internal breakdown, subject to the presence of electronic degeneracy or pseudodegeneracy. First formulated by Landau, L. in 1934, later proved and published by Jahn and Teller, this Jahn-Teller effect (JTE) underwent tremendous developments with important applications in physics, chemistry, biology, and materials science. Less attention was paid to the roots of this phenomenon and its correct interpretation in the sense of its influence on observable properties. It is shown that electronic degeneracy and its extended form, called pseudodegeneracy, are actually the only source of spontaneous symmetry breaking (SSB) in nature, including all forms of matter, beginning with elementary particles, via nuclei, atoms, molecules, and solids. Theoretically, the vulnerability of the notion of symmetry is due to the fact that, following quantum mechanics, the separation of the motion of electrons and nuclei (and, similarly, the separation of motions of elementary particles) is approximate, and hence the classical notion of polyatomic space configuration is approximate too, with SSB as one of its main violation.","PeriodicalId":9922,"journal":{"name":"Chemistry Journal of Moldova","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Journal of Moldova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19261/cjm.2023.1098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In a semi-review paper, it was discussed the notion of symmetry of polyatomic systems defined as invariance under transformations, and show that this important property of atomic matter is extremely vulnerable, and may undergo internal breakdown, subject to the presence of electronic degeneracy or pseudodegeneracy. First formulated by Landau, L. in 1934, later proved and published by Jahn and Teller, this Jahn-Teller effect (JTE) underwent tremendous developments with important applications in physics, chemistry, biology, and materials science. Less attention was paid to the roots of this phenomenon and its correct interpretation in the sense of its influence on observable properties. It is shown that electronic degeneracy and its extended form, called pseudodegeneracy, are actually the only source of spontaneous symmetry breaking (SSB) in nature, including all forms of matter, beginning with elementary particles, via nuclei, atoms, molecules, and solids. Theoretically, the vulnerability of the notion of symmetry is due to the fact that, following quantum mechanics, the separation of the motion of electrons and nuclei (and, similarly, the separation of motions of elementary particles) is approximate, and hence the classical notion of polyatomic space configuration is approximate too, with SSB as one of its main violation.
期刊介绍:
"Chemistry Journal of Moldova. General, Industrial and Ecological Chemistry" seeks to publish experimental or theoretical research results of outstanding significance and timeliness in all fields of Chemistry, including Industrial and Ecological Chemistry. The main goal of this edition is strengthening the Chemical Society of Moldova, following development of research in Moldovan chemical institutions and promotion of their collaboration with international chemical community. Manuscripts are welcome from all countries.