Benoit Schmauch , Sarah S. Elsoukkary , Amika Moro , Roma Raj , Chase J. Wehrle , Kazunari Sasaki , Julien Calderaro , Patrick Sin-Chan , Federico Aucejo , Daniel E. Roberts
{"title":"Combining a deep learning model with clinical data better predicts hepatocellular carcinoma behavior following surgery","authors":"Benoit Schmauch , Sarah S. Elsoukkary , Amika Moro , Roma Raj , Chase J. Wehrle , Kazunari Sasaki , Julien Calderaro , Patrick Sin-Chan , Federico Aucejo , Daniel E. Roberts","doi":"10.1016/j.jpi.2023.100360","DOIUrl":null,"url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is among the most common cancers worldwide, and tumor recurrence following liver resection or transplantation is one of the highest contributors to mortality in HCC patients after surgery. Using artificial intelligence (AI), we developed an interdisciplinary model to predict HCC recurrence and patient survival following surgery. We collected whole-slide H&E images, clinical variables, and follow-up data from 300 patients with HCC who underwent transplant and 169 patients who underwent resection at the Cleveland Clinic. A deep learning model was trained to predict recurrence-free survival (RFS) and disease-specific survival (DSS) from the H&E-stained slides. Repeated cross-validation splits were used to compute robust C-index estimates, and the results were compared to those obtained by fitting a Cox proportional hazard model using only clinical variables. While the deep learning model alone was predictive of recurrence and survival among patients in both cohorts, integrating the clinical and histologic models significantly increased the C-index in each cohort. In every subgroup analyzed, we found that a combined clinical and deep learning model better predicted post-surgical outcome in HCC patients compared to either approach independently.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"15 ","pages":"Article 100360"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2153353923001748/pdfft?md5=765c0e6b2719108fb46126309088e40a&pid=1-s2.0-S2153353923001748-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353923001748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is among the most common cancers worldwide, and tumor recurrence following liver resection or transplantation is one of the highest contributors to mortality in HCC patients after surgery. Using artificial intelligence (AI), we developed an interdisciplinary model to predict HCC recurrence and patient survival following surgery. We collected whole-slide H&E images, clinical variables, and follow-up data from 300 patients with HCC who underwent transplant and 169 patients who underwent resection at the Cleveland Clinic. A deep learning model was trained to predict recurrence-free survival (RFS) and disease-specific survival (DSS) from the H&E-stained slides. Repeated cross-validation splits were used to compute robust C-index estimates, and the results were compared to those obtained by fitting a Cox proportional hazard model using only clinical variables. While the deep learning model alone was predictive of recurrence and survival among patients in both cohorts, integrating the clinical and histologic models significantly increased the C-index in each cohort. In every subgroup analyzed, we found that a combined clinical and deep learning model better predicted post-surgical outcome in HCC patients compared to either approach independently.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.