Linking the ionomer film morphology and nanoscale oxygen transport properties in fuel cells

Linhao Fan , Yang Wang , Qing Du , Meng Ni , Kui Jiao
{"title":"Linking the ionomer film morphology and nanoscale oxygen transport properties in fuel cells","authors":"Linhao Fan ,&nbsp;Yang Wang ,&nbsp;Qing Du ,&nbsp;Meng Ni ,&nbsp;Kui Jiao","doi":"10.1016/j.jaecs.2023.100243","DOIUrl":null,"url":null,"abstract":"<div><p>Transport processes are crucial for the performance of electrochemical energy conversion devices and attract wide attentions. This work focuses on the critical oxygen transport process in the ionomer electrolyte film on a Pt electrode, which highly limits the performance of low Pt-loading fuel cells. Reduction of oxygen transport resistance may be achieved by optimizing the ionomer film morphology. Therefore, the relationship between ionomer film morphology and oxygen transport characteristics is explored by altering ionomer side chain lengths in this work. The results show that the swollen structure with larger water agglomerates in the ionomer film with shorter ionomer side chains is detrimental to the formation of oxygen transport paths. However, the multilamellar structure with an alternating alignment of water agglomerates and PFSA ionomer agglomerates in the ionomer film with longer ionomer side chains has a larger water-PFSA interface, which provides more oxygen transport paths and thus reduces the oxygen transport resistance. This work inspires the novel design concept of the ionomer electrolyte film with low local oxygen transport resistance, i.e., enlarging the water-PFSA interface parallel to the oxygen transport direction via altering the ionomer material properties, which is valuable for the development of low Pt-loading fuel cells.</p></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"17 ","pages":"Article 100243"},"PeriodicalIF":5.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666352X23001322/pdfft?md5=33af514ce5341c8fe5f401670fcb9acb&pid=1-s2.0-S2666352X23001322-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X23001322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Transport processes are crucial for the performance of electrochemical energy conversion devices and attract wide attentions. This work focuses on the critical oxygen transport process in the ionomer electrolyte film on a Pt electrode, which highly limits the performance of low Pt-loading fuel cells. Reduction of oxygen transport resistance may be achieved by optimizing the ionomer film morphology. Therefore, the relationship between ionomer film morphology and oxygen transport characteristics is explored by altering ionomer side chain lengths in this work. The results show that the swollen structure with larger water agglomerates in the ionomer film with shorter ionomer side chains is detrimental to the formation of oxygen transport paths. However, the multilamellar structure with an alternating alignment of water agglomerates and PFSA ionomer agglomerates in the ionomer film with longer ionomer side chains has a larger water-PFSA interface, which provides more oxygen transport paths and thus reduces the oxygen transport resistance. This work inspires the novel design concept of the ionomer electrolyte film with low local oxygen transport resistance, i.e., enlarging the water-PFSA interface parallel to the oxygen transport direction via altering the ionomer material properties, which is valuable for the development of low Pt-loading fuel cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将燃料电池中的离子膜形态与纳米级氧传输特性联系起来
传输过程对电化学能量转换设备的性能至关重要,因此受到广泛关注。这项工作的重点是铂电极上离子膜电解质薄膜中关键的氧传输过程,该过程严重限制了低铂负载燃料电池的性能。通过优化离子膜形态可降低氧传输阻力。因此,本研究通过改变离子膜侧链长度,探讨了离子膜形态与氧传输特性之间的关系。结果表明,离子聚合物侧链较短的离子聚合物薄膜中水团聚较大的膨胀结构不利于氧传输路径的形成。然而,在具有较长离子聚合物侧链的离子聚合物薄膜中,水团聚体和 PFSA 离子聚合物团聚体交替排列的多胶束结构具有较大的水-PFSA 界面,可提供更多的氧气传输路径,从而降低氧气传输阻力。这项工作启发了具有低局部氧传输阻力的离子膜电解质薄膜的新颖设计理念,即通过改变离子膜材料的特性,扩大平行于氧传输方向的水-PFSA界面,这对开发低铂负载燃料电池具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Machine learning enhanced time-resolved multi-particle tracking velocimetry in solid fuel particle group combustion Accelerating mixing controlled turbulent combustion simulations with hybrid Navier–Stokes/ANN scalar-solvers Role of pocket formation in the extinction of methane flames subject to strong turbulence Research progress on thermochemical conversion technologies for hydrogen production from waste plastics So, you want to measure flare emissions? Challenges and opportunities for quantifying utility pipe flare performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1