Modified Firefly Algorithm using Iterated Descent Method to Solve Machine Scheduling Problems

Hafed M. Motair
{"title":"Modified Firefly Algorithm using Iterated Descent Method to Solve Machine Scheduling Problems","authors":"Hafed M. Motair","doi":"10.22401/anjs.26.4.13","DOIUrl":null,"url":null,"abstract":"One of the most efficient metaheuristic algorithms that is used to solve hard optimization problems is the firefly algorithm (FFA). In this paper we use this algorithm to solve a single machine scheduling problem, we aim to minimize the sum of the two cost functions: the maximum tardiness and the maximum earliness. This problem (P) is NP-hard so we solve this problem using FFA as a metaheuristic algorithm. To explore the search space and get a good solution to a problem (Q), we hybridize FFA by Iterated Descent Method (IDM) in three ways and the results are FFA1, FFA2, and FFA3. In the computational test, we evaluate these algorithms (FFA, FFA1, FFA2, FFA3) compared with the genetic algorithm (GA) through a simulation process with job sizes from 10 jobs to 100 jobs. The results indicate that these modifications improve the performance of the original FFA and one of them (FFA3) gives better performance than others.","PeriodicalId":7494,"journal":{"name":"Al-Nahrain Journal of Science","volume":"437 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22401/anjs.26.4.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most efficient metaheuristic algorithms that is used to solve hard optimization problems is the firefly algorithm (FFA). In this paper we use this algorithm to solve a single machine scheduling problem, we aim to minimize the sum of the two cost functions: the maximum tardiness and the maximum earliness. This problem (P) is NP-hard so we solve this problem using FFA as a metaheuristic algorithm. To explore the search space and get a good solution to a problem (Q), we hybridize FFA by Iterated Descent Method (IDM) in three ways and the results are FFA1, FFA2, and FFA3. In the computational test, we evaluate these algorithms (FFA, FFA1, FFA2, FFA3) compared with the genetic algorithm (GA) through a simulation process with job sizes from 10 jobs to 100 jobs. The results indicate that these modifications improve the performance of the original FFA and one of them (FFA3) gives better performance than others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用迭代后裔法解决机器调度问题的改进型萤火虫算法
萤火虫算法(FFA)是用于解决高难度优化问题的最有效的元启发式算法之一。在本文中,我们使用该算法来解决单机调度问题,我们的目标是最小化两个成本函数之和:最大迟到率和最大早到率。这个问题(P)是 NP 难问题,因此我们使用 FFA 作为元启发式算法来解决这个问题。为了探索搜索空间并获得问题(Q)的良好解决方案,我们通过迭代后裔法(IDM)以三种方式对 FFA 进行了混合,结果分别为 FFA1、FFA2 和 FFA3。在计算测试中,我们通过模拟作业大小从 10 个作业到 100 个作业的过程,对这些算法(FFA、FFA1、FFA2、FFA3)与遗传算法(GA)进行了比较评估。结果表明,这些修改提高了原始 FFA 的性能,其中一种算法(FFA3)的性能优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of Radioactivity of Some Samples of Healthy Drinking Water and Liquefied Water in Some Areas of the Capital Baghdad Using HPGE Detector System Forensic Applications of Markers Present on the X Chromosome The Effect of 1,3,4-Oxadiazol and 1,2,4-Triazole Compounds on Urease and Pepsin Enzymes Evaluation of Glutathione Peroxidase and Glutathione Reductase Enzymes in Iraqi Patients with Colorectal Cancer Synthesis of Mn2O3 Nanoparticles and Determination of Its Inhibition Effect On Sera of Iraqi Patients with Diabetes Mellitus Type-2 and Diabetes Nephropathy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1