Wetting of ZnO-ceramic with alloys of the silver-copper system in vacuum

O. Durov, V. Poluyanska, T. Stetsyuk
{"title":"Wetting of ZnO-ceramic with alloys of the silver-copper system in vacuum","authors":"O. Durov, V. Poluyanska, T. Stetsyuk","doi":"10.15407/materials2023.07.008","DOIUrl":null,"url":null,"abstract":"Zinc oxide is a wide-gap semiconductor with unique properties, used for the manufacture of catalysts, electrodes, transistors, etc. In these applications, there is a need for metallization and joining of ZnO-based materials, using of molten metal filler is an effective method. Contact of zinc oxide and liquid metals is almost not studied in comparison to other oxide materials. In this work the wetting of zinc oxide based ceramic with metal melts of the silver-copper system in high vacuum was studied. Alloys with concentration of copper (% (at.)) 0 (pure silver), 5, 10, 20, 30, 39, 100 (pure copper) were used. Increasing the concentration of copper in the silver-copper melts significantly improves the wetting of ZnO-ceramic with these liquids, the contact angles decrease from 137° for the pure silver to 28° for the pure copper. Investigations of the microstructure show presence of relatively thin transition layers on the interfaces for silver-copper alloys, for the pure copper case the interface has complex “island-like” microstructure. Also a ruination of ZnO-ceramic substrates due to an interaction with metal melt was noted, the higher copper concentration, the more intensive ruination. Also some signs of the presence of zinc in the metal drops solidified on the zinc oxide surface were revealed, such as, intensive oxidation of the drops in air at room temperature. The oxidation shows complex multiphase microstructure of the solidified drops. After wetting of the zinc oxide with pure copper the solidified metal has microstructure of brass (Cu—Zn alloy) with low zinc concentration. The effects observed can be explained by sublimation of the zinc oxide under experimental conditions (high temperatures, vacuum) with formation of gaseous products (oxygen and vapor of zinc), which subsequently dissolve in silver-copper liquid drops. In particular, the dissolution of oxygen in the Ag—Cu melt improves its wetting of surfaces of solid oxides and presence of zinc in solidified drops provides its oxidization in air. Keywords: zinc oxide, wetting with metals, contact interaction, microstructure, transition layer.","PeriodicalId":509971,"journal":{"name":"Uspihi materialoznavstva","volume":"87 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspihi materialoznavstva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/materials2023.07.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc oxide is a wide-gap semiconductor with unique properties, used for the manufacture of catalysts, electrodes, transistors, etc. In these applications, there is a need for metallization and joining of ZnO-based materials, using of molten metal filler is an effective method. Contact of zinc oxide and liquid metals is almost not studied in comparison to other oxide materials. In this work the wetting of zinc oxide based ceramic with metal melts of the silver-copper system in high vacuum was studied. Alloys with concentration of copper (% (at.)) 0 (pure silver), 5, 10, 20, 30, 39, 100 (pure copper) were used. Increasing the concentration of copper in the silver-copper melts significantly improves the wetting of ZnO-ceramic with these liquids, the contact angles decrease from 137° for the pure silver to 28° for the pure copper. Investigations of the microstructure show presence of relatively thin transition layers on the interfaces for silver-copper alloys, for the pure copper case the interface has complex “island-like” microstructure. Also a ruination of ZnO-ceramic substrates due to an interaction with metal melt was noted, the higher copper concentration, the more intensive ruination. Also some signs of the presence of zinc in the metal drops solidified on the zinc oxide surface were revealed, such as, intensive oxidation of the drops in air at room temperature. The oxidation shows complex multiphase microstructure of the solidified drops. After wetting of the zinc oxide with pure copper the solidified metal has microstructure of brass (Cu—Zn alloy) with low zinc concentration. The effects observed can be explained by sublimation of the zinc oxide under experimental conditions (high temperatures, vacuum) with formation of gaseous products (oxygen and vapor of zinc), which subsequently dissolve in silver-copper liquid drops. In particular, the dissolution of oxygen in the Ag—Cu melt improves its wetting of surfaces of solid oxides and presence of zinc in solidified drops provides its oxidization in air. Keywords: zinc oxide, wetting with metals, contact interaction, microstructure, transition layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在真空中用银铜合金润湿氧化锌陶瓷
氧化锌是一种具有独特性能的宽隙半导体,可用于制造催化剂、电极和晶体管等。在这些应用中,需要对氧化锌基材料进行金属化和连接,使用熔融金属填料是一种有效的方法。与其他氧化物材料相比,人们几乎没有研究过氧化锌与液态金属的接触。在这项工作中,研究了氧化锌基陶瓷与银-铜体系金属熔体在高真空中的润湿问题。合金中铜的浓度(%(at.)0(纯银)、5、10、20、30、39、100(纯铜)。银铜熔体中铜浓度的增加显著改善了氧化锌陶瓷与这些液体的润湿性,接触角从纯银的 137°降至纯铜的 28°。对微观结构的研究表明,银铜合金的界面上存在相对较薄的过渡层,而纯铜的界面则具有复杂的 "岛状 "微观结构。此外,由于与金属熔体的相互作用,氧化锌陶瓷基底出现了毁损,铜浓度越高,毁损越严重。此外,在氧化锌表面凝固的金属液滴中也发现了一些锌存在的迹象,例如,液滴在室温空气中发生了剧烈氧化。氧化显示了凝固液滴复杂的多相微观结构。纯铜润湿氧化锌后,凝固的金属具有低锌浓度黄铜(铜锌合金)的微观结构。观察到的效果可以解释为氧化锌在实验条件(高温、真空)下升华,形成气态产物(氧气和锌蒸汽),随后溶解在银铜液滴中。尤其是氧气在银铜熔体中的溶解改善了其对固体氧化物表面的润湿,而锌在凝固液滴中的存在则促进了其在空气中的氧化。关键词:氧化锌、与金属的润湿、接触相互作用、微观结构、过渡层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-temperature phase stability of ceramics in the ZrO2—Y2O3—CeO2 system produced after heat treatment of the starting powders at 850 °C Wetting and contact interaction of semconductor oxide materials Ga2O3, In2O3, ZnO with metallic melts in vacuum ZrB2 ceramics with MoSi2, SiC and B4C additives: compaction kinetics, phase formation and creep resistance Hypothetical CeO2—Ln2O3 phase diagrams (Ln = yttrium lanthanides, Y2O3) The use of titanium in the form of a foil for rubbing non-metallic materials with the purpose of wetting them and soldering them with metal solders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1