Design and Verification of a Miniaturized Multifunctional Transmitarray Unit Cell for the S-Band

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of electromagnetic engineering and science Pub Date : 2023-11-30 DOI:10.26866/jees.2023.6.r.195
Gyoungdeuk Kim, Myeongha Hwang, Ingon Lee, Sangkil Kim
{"title":"Design and Verification of a Miniaturized Multifunctional Transmitarray Unit Cell for the S-Band","authors":"Gyoungdeuk Kim, Myeongha Hwang, Ingon Lee, Sangkil Kim","doi":"10.26866/jees.2023.6.r.195","DOIUrl":null,"url":null,"abstract":"In this paper, a miniaturized multifunctional unit cell structure of a transmitarray operating at S-band and its verification method using a waveguide structure is presented. The unit cell of a multifunctional transmitarray antenna is a critical component because it controls the phase and polarization of an incident wave. The proposed unit cell consists of three main parts: an Rx antenna, a Tx antenna, and a control circuit for phase and polarization. The performance of the designed unit cell is verified by a rectangular waveguide structure. The waveguide structure feeds an electromagnetic wave propagating in a TE10 mode to a 1 × 2 unit cell array to verify polarization and phase shifting capability of the unit cell. The phase shifting and polarization conversion capabilities of the proposed unit cell are directly measured by the radiation patterns and polarization of the transmitted wave.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":"545 ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.6.r.195","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a miniaturized multifunctional unit cell structure of a transmitarray operating at S-band and its verification method using a waveguide structure is presented. The unit cell of a multifunctional transmitarray antenna is a critical component because it controls the phase and polarization of an incident wave. The proposed unit cell consists of three main parts: an Rx antenna, a Tx antenna, and a control circuit for phase and polarization. The performance of the designed unit cell is verified by a rectangular waveguide structure. The waveguide structure feeds an electromagnetic wave propagating in a TE10 mode to a 1 × 2 unit cell array to verify polarization and phase shifting capability of the unit cell. The phase shifting and polarization conversion capabilities of the proposed unit cell are directly measured by the radiation patterns and polarization of the transmitted wave.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和验证用于 S 波段的小型化多功能传输阵列单元格
本文介绍了一种工作在 S 波段的小型化多功能透射阵列单元单元结构及其使用波导结构的验证方法。多功能透射阵列天线的单元单元是一个关键部件,因为它控制着入射波的相位和极化。所提出的单元单元由三个主要部分组成:Rx 天线、Tx 天线以及相位和极化控制电路。设计单元的性能通过矩形波导结构进行了验证。波导结构将以 TE10 模式传播的电磁波馈送到 1 × 2 单元阵列,以验证单元阵列的极化和移相能力。通过传输波的辐射模式和偏振,直接测量了所提单元池的移相和偏振转换能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
期刊最新文献
Efficient FDTD Simulation for the EM Analysis of Faraday Rotation in the Ionosphere Experimental Results of Magnetic Communication Using the Giant Magnetoimpedance Receiver in Underwater Environments A Separation Method for Electromagnetic Radiation Sources of the Same Frequency Investigation of Pulse Characteristics of a Novel Cylindrically Slotted Cloaked Antenna Time-Domain Measurement Data Accumulation for Slow Moving Point Target Detection in Heavily Cluttered Environments Using CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1