Synergetic Effect Of Ternary Mixture Of Nano Silicon Carbide-Polyvinyl Alcohol-Lithium Sulfate On Early Strength Of Cement

IF 0.6 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Chiang Mai Journal of Science Pub Date : 2023-11-30 DOI:10.12982/cmjs.2023.065
Jian Liu, Jingwen Rong, Xiaoli Ji, Boyang Chen, Yuan Wang
{"title":"Synergetic Effect Of Ternary Mixture Of Nano Silicon Carbide-Polyvinyl Alcohol-Lithium Sulfate On Early Strength Of Cement","authors":"Jian Liu, Jingwen Rong, Xiaoli Ji, Boyang Chen, Yuan Wang","doi":"10.12982/cmjs.2023.065","DOIUrl":null,"url":null,"abstract":"T o solve the problems of low compressive strength and unstable sealing capability of traditional hole sealing materials in the early stage of underground coal mines, a new cement-based sealing material was developed in this study by mixing ordinary Portland cement with nanomaterial, water-soluble polymer and lithium salt as additives. The early strength and the microstructure evolution of the as-prepared cement material were investigated with uniaxial compression test, scanning electron microscope (SEM), thermogravimetric analysis and X-ray diffraction (XRD). The results show that the ternary composite material (nano silicon carbide, polyvinyl alcohol and lithium sulfate) can effectively improve the early strength of cement. The 1-day compressive strength increased from 8.56 to 14.21 MPa, pointing out an improvement rate of 66.00%. It can be seen from the SEM images that a large number of fibrous C-S-H crystals and rod-shaped AFt crystals formed in the ternary composite cement sample. The nanosized silicon carbide (SiC) can accelerate the generation of hydration products through forming nucleation sites. As a dispersing agent polyvinyl alcohol (PVA) can effectively prevent the agglomeration of SiC nanoparticles and the formation of cement particle flocculation structure. On the other hand, the lithium cations and the sulfate anions of lithium sulfate could penetrate the hydration film structure and react with the hydration product Ca(OH)2, respectively, which promotes the hydration reaction. The promotion effect of the ternary composite material on the formation of hydration products results in a clearly improved early strength of the new cement-based sealing material.","PeriodicalId":9884,"journal":{"name":"Chiang Mai Journal of Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chiang Mai Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.12982/cmjs.2023.065","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

T o solve the problems of low compressive strength and unstable sealing capability of traditional hole sealing materials in the early stage of underground coal mines, a new cement-based sealing material was developed in this study by mixing ordinary Portland cement with nanomaterial, water-soluble polymer and lithium salt as additives. The early strength and the microstructure evolution of the as-prepared cement material were investigated with uniaxial compression test, scanning electron microscope (SEM), thermogravimetric analysis and X-ray diffraction (XRD). The results show that the ternary composite material (nano silicon carbide, polyvinyl alcohol and lithium sulfate) can effectively improve the early strength of cement. The 1-day compressive strength increased from 8.56 to 14.21 MPa, pointing out an improvement rate of 66.00%. It can be seen from the SEM images that a large number of fibrous C-S-H crystals and rod-shaped AFt crystals formed in the ternary composite cement sample. The nanosized silicon carbide (SiC) can accelerate the generation of hydration products through forming nucleation sites. As a dispersing agent polyvinyl alcohol (PVA) can effectively prevent the agglomeration of SiC nanoparticles and the formation of cement particle flocculation structure. On the other hand, the lithium cations and the sulfate anions of lithium sulfate could penetrate the hydration film structure and react with the hydration product Ca(OH)2, respectively, which promotes the hydration reaction. The promotion effect of the ternary composite material on the formation of hydration products results in a clearly improved early strength of the new cement-based sealing material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米碳化硅-聚乙烯醇-硫酸锂三元混合物对水泥早期强度的协同效应
为解决煤矿井下早期传统封孔材料抗压强度低、封孔能力不稳定等问题,本研究以纳米材料、水溶性聚合物和锂盐为添加剂,掺入普通硅酸盐水泥,研制了一种新型水泥基封孔材料。通过单轴压缩试验、扫描电子显微镜(SEM)、热重分析和 X 射线衍射(XRD)对制备的水泥材料的早期强度和微观结构演变进行了研究。结果表明,三元复合材料(纳米碳化硅、聚乙烯醇和硫酸锂)能有效提高水泥的早期强度。1 天抗压强度从 8.56 兆帕提高到 14.21 兆帕,提高率达 66.00%。从扫描电镜图像可以看出,三元复合水泥样品中形成了大量纤维状的 C-S-H 晶体和棒状的 AFt 晶体。纳米碳化硅(SiC)可通过形成成核点加速水化产物的生成。作为分散剂的聚乙烯醇(PVA)可有效防止 SiC 纳米颗粒的团聚和水泥颗粒絮凝结构的形成。另一方面,硫酸锂中的锂阳离子和硫酸根阴离子可渗透水化膜结构,分别与水化产物 Ca(OH)2 发生反应,从而促进水化反应。三元复合材料对水化产物形成的促进作用使新型水泥基密封材料的早期强度明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chiang Mai Journal of Science
Chiang Mai Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.00
自引率
25.00%
发文量
103
审稿时长
3 months
期刊介绍: The Chiang Mai Journal of Science is an international English language peer-reviewed journal which is published in open access electronic format 6 times a year in January, March, May, July, September and November by the Faculty of Science, Chiang Mai University. Manuscripts in most areas of science are welcomed except in areas such as agriculture, engineering and medical science which are outside the scope of the Journal. Currently, we focus on manuscripts in biology, chemistry, physics, materials science and environmental science. Papers in mathematics statistics and computer science are also included but should be of an applied nature rather than purely theoretical. Manuscripts describing experiments on humans or animals are required to provide proof that all experiments have been carried out according to the ethical regulations of the respective institutional and/or governmental authorities and this should be clearly stated in the manuscript itself. The Editor reserves the right to reject manuscripts that fail to do so.
期刊最新文献
Humidity Effects on Cs0.17FA0.83Pb(I0.83Br0.17)3 Thin Films for Carbon-based Perovskite Solar Cells Effects of Co Concentration on Structure and Thermoelectric Properties of PrBa2(Cu1-xCox)3O7-y Ceramics Maize Downy Mildew (Peronosclerospora neglecta) in Cambodia, Lao PDR, and Thailand Enzymatic Modification of Dietary Fiber from Bamboo Shoot Byproduct Termitomyces flavus sp. nov. (Lyophyllaceae, Agaricales), a New Species from Northern Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1