Counterfactual image generation by disentangling data attributes with deep generative models

IF 0.5 Q4 STATISTICS & PROBABILITY Communications for Statistical Applications and Methods Pub Date : 2023-11-30 DOI:10.29220/csam.2023.30.6.589
Jieon Lim, Weonyoung Joo
{"title":"Counterfactual image generation by disentangling data attributes with deep generative models","authors":"Jieon Lim, Weonyoung Joo","doi":"10.29220/csam.2023.30.6.589","DOIUrl":null,"url":null,"abstract":"Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":"55 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications for Statistical Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29220/csam.2023.30.6.589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度生成模型分解数据属性生成反事实图像
深度生成模型以推断底层真实数据分布为目标,在生成虚假但真实的数据方面取得了巨大成功。从这个角度来看,数据属性可能是数据生成过程中的一个关键因素,因为通过改变某些因素可以生成不存在的反事实样本。例如,我们可以通过改变性别属性或发色属性来生成新的肖像图像。本文提出了专门用于数据属性级反事实数据生成的反事实分离变异自动编码生成对抗网络(CDVAE-GAN)。CDVAE-GAN 的结构由变异自动编码器和生成式对抗网络组成。具体来说,我们采用高斯变异自动编码器来提取低维分解数据特征,并采用辅助伯努利潜变量对数据属性分别建模。此外,我们还利用生成式对抗网络生成高可靠性数据。通过利用带有额外伯努利潜变量和生成式对抗网络的变分自动编码器的优点,所提出的 CDVAE-GAN 可以控制数据属性,并能生成反事实数据。我们在 CelebA 数据集上的实验结果表明,CDVAE-GAN 生成的样本是真实的。此外,定量结果也证明了所提出的模型可以生成欺骗其他机器学习分类器的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
49
期刊介绍: Communications for Statistical Applications and Methods (Commun. Stat. Appl. Methods, CSAM) is an official journal of the Korean Statistical Society and Korean International Statistical Society. It is an international and Open Access journal dedicated to publishing peer-reviewed, high quality and innovative statistical research. CSAM publishes articles on applied and methodological research in the areas of statistics and probability. It features rapid publication and broad coverage of statistical applications and methods. It welcomes papers on novel applications of statistical methodology in the areas including medicine (pharmaceutical, biotechnology, medical device), business, management, economics, ecology, education, computing, engineering, operational research, biology, sociology and earth science, but papers from other areas are also considered.
期刊最新文献
Influence diagnostics for skew-t censored linear regression models Identification of indirect effects in the two-condition within-subject mediation model and its implementation using SEM Robust extreme quantile estimation for Pareto-type tails through an exponential regression model Two-stage imputation method to handle missing data for categorical response variable Counterfactual image generation by disentangling data attributes with deep generative models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1