Parametric Optimizing Green Sand-Casting Process Parameters using hybrid Taguchi Grey Relational Analyses and Principal Component Analyses

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY Jurnal Kejuruteraan Pub Date : 2023-11-30 DOI:10.17576/jkukm-2023-35(6)-09
Manish J. Vora
{"title":"Parametric Optimizing Green Sand-Casting Process Parameters using hybrid Taguchi Grey Relational Analyses and Principal Component Analyses","authors":"Manish J. Vora","doi":"10.17576/jkukm-2023-35(6)-09","DOIUrl":null,"url":null,"abstract":"The Green Sand-casting technique is a very ancient method of casting that has many different uses. The increased rate of errors and rejection in this process is a key drawback that reduces output and profits. It’s challenging to develop a good link between the many different parameters and defects since the process is so complicated. This article describes a hybrid approach to find the co-relation for sand casting process’s variables. This approach mixes the Taguchi method (TM) with Grey Relational Analysis (GRA) paired with Principal Component Analysis (PCA). Moisture content, Permeability, Loss of Ignition, Pouring Time & Pouring Temperature selected as input parameters while types of defects (Shrinkage, Blow holes, Cracks, Porosity) as responses for proposed study. The L27 OA from Taguchi is used to plan the tests. TM implemented to analyse individual responses. GRA is applied to find optimal solutions for a set of replies, whereas PCA is used to determine how much weight each response should be given. Using proposed methodology, 4% moisture content, 160% permeability, 5% loss of ignition, 60 seconds of pouring time, and 1400°C found as optimum set of parameters. The findings demonstrate that the hybrid approach, which makes use of both a cost-effective and efficient experimental design strategy, was successful in resolving the complexity trade-off experienced throughout the judgment process of multi-response optimization.","PeriodicalId":17688,"journal":{"name":"Jurnal Kejuruteraan","volume":"31 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kejuruteraan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17576/jkukm-2023-35(6)-09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Green Sand-casting technique is a very ancient method of casting that has many different uses. The increased rate of errors and rejection in this process is a key drawback that reduces output and profits. It’s challenging to develop a good link between the many different parameters and defects since the process is so complicated. This article describes a hybrid approach to find the co-relation for sand casting process’s variables. This approach mixes the Taguchi method (TM) with Grey Relational Analysis (GRA) paired with Principal Component Analysis (PCA). Moisture content, Permeability, Loss of Ignition, Pouring Time & Pouring Temperature selected as input parameters while types of defects (Shrinkage, Blow holes, Cracks, Porosity) as responses for proposed study. The L27 OA from Taguchi is used to plan the tests. TM implemented to analyse individual responses. GRA is applied to find optimal solutions for a set of replies, whereas PCA is used to determine how much weight each response should be given. Using proposed methodology, 4% moisture content, 160% permeability, 5% loss of ignition, 60 seconds of pouring time, and 1400°C found as optimum set of parameters. The findings demonstrate that the hybrid approach, which makes use of both a cost-effective and efficient experimental design strategy, was successful in resolving the complexity trade-off experienced throughout the judgment process of multi-response optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用田口灰色关联分析和主成分分析混合方法对绿砂铸造工艺参数进行参数优化
绿砂铸造技术是一种非常古老的铸造方法,有许多不同的用途。在这一工艺中,错误率和废品率的增加是降低产量和利润的主要缺点。由于工艺非常复杂,要在许多不同的参数和缺陷之间建立良好的联系非常具有挑战性。本文介绍了一种混合方法,用于寻找砂型铸造工艺变量之间的相互关系。这种方法混合了田口方法 (TM) 和灰色关联分析 (GRA) 以及主成分分析 (PCA)。湿度、渗透性、点火损失、浇注时间和浇注温度被选为输入参数,而缺陷类型(收缩、喷孔、裂纹、孔隙率)被选为拟研究的响应。采用 Taguchi 的 L27 OA 来规划测试。采用 TM 分析单个响应。应用 GRA 为一组反应寻找最佳解决方案,而 PCA 则用于确定每个反应应占的权重。使用建议的方法,发现 4% 的含水量、160% 的渗透率、5% 的失燃率、60 秒的浇注时间和 1400°C 是一组最佳参数。研究结果表明,混合方法既利用了经济有效的实验设计策略,又成功地解决了多响应优化判断过程中的复杂性权衡问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Jurnal Kejuruteraan
Jurnal Kejuruteraan ENGINEERING, MULTIDISCIPLINARY-
自引率
16.70%
发文量
0
审稿时长
24 weeks
期刊最新文献
3D Printed Carbon Fibre Reinforced Polyamides in High Temperature An App for Parking with Indoor Navigation Facility Numerical Analysis of Structural Batteries Response with the Presence of Uncertainty Experimental Investigation of Mechanical and Microstructural Properties of Concrete Containing Bentonite and Dolomite as a Partial Replacement of Cement The Design of Stroke Rehabilitation Using Artificial Intelligence K.A.K.I (Kinesthetic Augmented Kinematic Inference)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1