Demand Forecasting and Budget Planning for Automotive Supply Chain

Anand Limbare, Rashmi Agarwal
{"title":"Demand Forecasting and Budget Planning for Automotive Supply Chain","authors":"Anand Limbare, Rashmi Agarwal","doi":"10.4108/eetiot.4514","DOIUrl":null,"url":null,"abstract":"Over the past 20 years, there have been significant changes in the supply chain business. One of the most significant changes has been the development of supply chain management systems. It is now essential to use cutting-edge technologies to maintain competitiveness in a highly dynamic environment. Restocking inventories is one of a supplier’s main survival strategies and knowing what expenses to expect in the next month aids in better decision-making. This study aims to solve the three most common industry problems in Supply Chain – Inventory Management, Budget Fore-casting, and Cost vs Benefit of every supplier. The selection of the best forecasting model is still a major problem in much research in literature. In this context, this article aims to compare the performances of Auto-Regressive Integrated Moving Average (ARIMA), Holt-Winters (HW), and Long Short-Term Memory (LSTM) models for the prediction of a time series formed by the dataset of Supply Chain products. As performance measures, metric analysis of the Root Mean Square Error (RMSE) is used. The main concentration is on the Automotive Business Unit with the top 3 products under this segment and the country United States being in focus. All three models, ARIMA, HW, and LSTM obtained better results regarding the performance metrics.","PeriodicalId":506477,"journal":{"name":"EAI Endorsed Transactions on Internet of Things","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetiot.4514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past 20 years, there have been significant changes in the supply chain business. One of the most significant changes has been the development of supply chain management systems. It is now essential to use cutting-edge technologies to maintain competitiveness in a highly dynamic environment. Restocking inventories is one of a supplier’s main survival strategies and knowing what expenses to expect in the next month aids in better decision-making. This study aims to solve the three most common industry problems in Supply Chain – Inventory Management, Budget Fore-casting, and Cost vs Benefit of every supplier. The selection of the best forecasting model is still a major problem in much research in literature. In this context, this article aims to compare the performances of Auto-Regressive Integrated Moving Average (ARIMA), Holt-Winters (HW), and Long Short-Term Memory (LSTM) models for the prediction of a time series formed by the dataset of Supply Chain products. As performance measures, metric analysis of the Root Mean Square Error (RMSE) is used. The main concentration is on the Automotive Business Unit with the top 3 products under this segment and the country United States being in focus. All three models, ARIMA, HW, and LSTM obtained better results regarding the performance metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车供应链的需求预测和预算规划
在过去 20 年里,供应链业务发生了重大变化。其中最重要的变化之一就是供应链管理系统的发展。现在,要在高度动态的环境中保持竞争力,就必须使用尖端技术。补充库存是供应商的主要生存策略之一,了解下个月的预期支出有助于做出更好的决策。本研究旨在解决供应链中最常见的三个行业问题--库存管理、预算预测和每个供应商的成本与收益。在许多文献研究中,选择最佳预测模型仍是一个主要问题。在此背景下,本文旨在比较自回归整合移动平均(ARIMA)、霍尔特-温特斯(HW)和长短期记忆(LSTM)模型在预测由供应链产品数据集形成的时间序列时的表现。作为性能衡量标准,使用了均方根误差(RMSE)度量分析。主要集中在汽车业务部门,重点是该部门的前 3 种产品和美国。在性能指标方面,ARIMA、HW 和 LSTM 三种模型都取得了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust GAN-Based CNN Model as Generative AI Application for Deepfake Detection Identification of Lithology from Well Log Data Using Machine Learning Crime Prediction using Machine Learning Crime Prediction using Machine Learning Circumventing Stragglers and Staleness in Distributed CNN using LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1