S. Nandigama, Bharath Kunooru, Dasari Ramakrishna, Vijay M. Pandharipande
{"title":"Pattern Similarity and Gain Enhancement of Dual-Band Antenna Using an ENZ Metamaterial","authors":"S. Nandigama, Bharath Kunooru, Dasari Ramakrishna, Vijay M. Pandharipande","doi":"10.26866/jees.2023.6.r.191","DOIUrl":null,"url":null,"abstract":"A dual-band antenna with pattern similarity using the energy-squeezing mechanism of an epsilon-near-zero (ENZ) metamaterial is designed, and experimental results are presented with simulated data. To achieve high gain and pattern similarity, a waveguide-based ENZ metamaterial property is adopted in a planar microstrip form at the upper band. The designed dual-band antenna is resonating at 4.3 GHz and 9.8 GHz frequencies with the desired radiation pattern. A metamaterial unit cell with ENZ characteristics at 9.8 GHz is designed to improve the antenna’s performance. The permittivity and permeability of the unit cell are characterized using the Nicolson–Ross–Weir method. By adding a square ring structure, the antenna geometry exhibits ENZ characteristics. Using the ENZ material’s energy-squeezing mechanism, a 12-dB gain improvement is achieved in the upper band without affecting the lower band radiation characteristics without increasing the complexity. It can be used in C- and X-band applications, such as mobile, military, defense, and radar communication. The dual-band antenna with ENZ material is fabricated, and the measured results show a good match with the simulated results. The proposed antenna size at 4.3 GHz is 0.58λ × 0.58λ × 0.02λ.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":"119 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.6.r.191","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A dual-band antenna with pattern similarity using the energy-squeezing mechanism of an epsilon-near-zero (ENZ) metamaterial is designed, and experimental results are presented with simulated data. To achieve high gain and pattern similarity, a waveguide-based ENZ metamaterial property is adopted in a planar microstrip form at the upper band. The designed dual-band antenna is resonating at 4.3 GHz and 9.8 GHz frequencies with the desired radiation pattern. A metamaterial unit cell with ENZ characteristics at 9.8 GHz is designed to improve the antenna’s performance. The permittivity and permeability of the unit cell are characterized using the Nicolson–Ross–Weir method. By adding a square ring structure, the antenna geometry exhibits ENZ characteristics. Using the ENZ material’s energy-squeezing mechanism, a 12-dB gain improvement is achieved in the upper band without affecting the lower band radiation characteristics without increasing the complexity. It can be used in C- and X-band applications, such as mobile, military, defense, and radar communication. The dual-band antenna with ENZ material is fabricated, and the measured results show a good match with the simulated results. The proposed antenna size at 4.3 GHz is 0.58λ × 0.58λ × 0.02λ.
期刊介绍:
The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.