{"title":"Soc Estimation of Li-ion Battery Based on Adaptive CKF Algorithm","authors":"Zhengjun Huang, Yu Chen, Meifang Zhou","doi":"10.12982/cmjs.2023.063","DOIUrl":null,"url":null,"abstract":"A second-or der RC equivalent circuit model was established to improve the estimation accuracy of state of charge (SOC) of power Li-ion batteries, and the model parameters were identified by the recursive least square method with forgetting factor (FFRLS). On this basis, an adaptive cubature kalman filter (ACKF) algorithm was proposed to adaptively modify the process noise covariance matrix and the measurement noise covariance matrix to improve the SOC estimation accuracy. Finally, the SOC estimation algorithm was verified by MATLAB simulations. The results show that compared with UKF and CKF algorithms, the proposed algorithm has higher estimation accuracy and robustness, and can meet the application requirements.","PeriodicalId":9884,"journal":{"name":"Chiang Mai Journal of Science","volume":"78 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chiang Mai Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.12982/cmjs.2023.063","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A second-or der RC equivalent circuit model was established to improve the estimation accuracy of state of charge (SOC) of power Li-ion batteries, and the model parameters were identified by the recursive least square method with forgetting factor (FFRLS). On this basis, an adaptive cubature kalman filter (ACKF) algorithm was proposed to adaptively modify the process noise covariance matrix and the measurement noise covariance matrix to improve the SOC estimation accuracy. Finally, the SOC estimation algorithm was verified by MATLAB simulations. The results show that compared with UKF and CKF algorithms, the proposed algorithm has higher estimation accuracy and robustness, and can meet the application requirements.
期刊介绍:
The Chiang Mai Journal of Science is an international English language peer-reviewed journal which is published in open access electronic format 6 times a year in January, March, May, July, September and November by the Faculty of Science, Chiang Mai University. Manuscripts in most areas of science are welcomed except in areas such as agriculture, engineering and medical science which are outside the scope of the Journal. Currently, we focus on manuscripts in biology, chemistry, physics, materials science and environmental science. Papers in mathematics statistics and computer science are also included but should be of an applied nature rather than purely theoretical. Manuscripts describing experiments on humans or animals are required to provide proof that all experiments have been carried out according to the ethical regulations of the respective institutional and/or governmental authorities and this should be clearly stated in the manuscript itself. The Editor reserves the right to reject manuscripts that fail to do so.