Layered Double Hydroxide Coated by Carbon-Based Material for Environmental Dye Pollutant

N. Palapa, A. Wijaya
{"title":"Layered Double Hydroxide Coated by Carbon-Based Material for Environmental Dye Pollutant","authors":"N. Palapa, A. Wijaya","doi":"10.26554/ijmr.20231311","DOIUrl":null,"url":null,"abstract":"We conducted this research to modify NiAl layered double hydroxide with several carbon-based materials, including cellulose, biochar and graphite. This material was successfully prepared by coprecipitation methods and was proven by XRD, SEM and FTIR characterization. Furthermore, we conducted the adsorption process and reusability to investigate their ability as water treatments. The dose effect on M.G. removal was investigated by the highest M.G. removal capacity using the CBC-NiAl LDHs composite, which was 100 mg. M.G. removal capacity was increased with an increase in contact time, and the saturation point was reached after 60 min for CC-NiAl and CGF-NiAl LDHs, which CBC-NiAl LDH increased and saturated after 100 min with high adsorption capacity. CC-NiAl, CBC-NiAl and CGF-NiAl LDHs composite have proved efficient, sustainable materials that maintain adsorption capability in each reusable cycle.","PeriodicalId":170983,"journal":{"name":"Indonesian Journal of Material Research","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Material Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/ijmr.20231311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We conducted this research to modify NiAl layered double hydroxide with several carbon-based materials, including cellulose, biochar and graphite. This material was successfully prepared by coprecipitation methods and was proven by XRD, SEM and FTIR characterization. Furthermore, we conducted the adsorption process and reusability to investigate their ability as water treatments. The dose effect on M.G. removal was investigated by the highest M.G. removal capacity using the CBC-NiAl LDHs composite, which was 100 mg. M.G. removal capacity was increased with an increase in contact time, and the saturation point was reached after 60 min for CC-NiAl and CGF-NiAl LDHs, which CBC-NiAl LDH increased and saturated after 100 min with high adsorption capacity. CC-NiAl, CBC-NiAl and CGF-NiAl LDHs composite have proved efficient, sustainable materials that maintain adsorption capability in each reusable cycle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳基材料包覆的层状双氢氧化物用于环境染料污染物的研究
我们开展了这项研究,用几种碳基材料(包括纤维素、生物炭和石墨)对 NiAl 层状双氢氧化物进行改性。我们采用共沉淀法成功制备了这种材料,并通过 XRD、SEM 和 FTIR 表征进行了验证。此外,我们还对其吸附过程和重复利用率进行了研究,以考察其作为水处理剂的能力。通过使用 CBC-NiAl LDHs 复合材料的最高 M.G.去除率(100 毫克),研究了剂量对 M.G.去除率的影响。随着接触时间的增加,M.G.的去除能力也在增加,CC-NiAl 和 CGF-NiAl LDHs 在 60 分钟后达到饱和点,CBC-NiAl LDH 在 100 分钟后达到饱和点,吸附能力较高。事实证明,CC-NiAl、CBC-NiAl 和 CGF-NiAl LDHs 复合材料是高效、可持续的材料,在每个可重复使用的循环中都能保持吸附能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selective Adsorption of Cationic and Anionic Dyes using Ni/Al Layered DoubleHydroxide Modified withEucheuma cottonii The Effect of Titanium Nanostructure on Corrosion Resistance as Dental Implants: A Review A Comparative Analysis of Compressive and Flexural Strength in Concrete with Partial Cement Replacement using Waste Glass Powder Selectivity Adsorption of Anionic Dyes by Macroalgae E. cottonii Synthesis and Characterization of Ni/Al Layered Double Hydroxides Composite Based-Material with Chitosan, Cellulose, and Graphene Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1