Innovative maximum power point tracking technique for wind energy conversion system

IF 1.5 Q4 ENERGY & FUELS Wind Engineering Pub Date : 2023-11-29 DOI:10.1177/0309524x231201656
S. Tounsi
{"title":"Innovative maximum power point tracking technique for wind energy conversion system","authors":"S. Tounsi","doi":"10.1177/0309524x231201656","DOIUrl":null,"url":null,"abstract":"In this work, an optimal control scheme based on the Maximum Power Point tracking for the Wind Energy Conversion System using Permanent Magnet Synchronous Generator (PMSG) is proposed and also modeled. The system studied in this paper consists of wind energy system powering a battery using a buck-boost converter as an interface. By modifying the buck-boost duty cycle, we vary the reflected voltage at PMSG, and accordingly its speed. It is controlled with Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) approach. The overall system is simulated with MATLAB/SIMULINK.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x231201656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, an optimal control scheme based on the Maximum Power Point tracking for the Wind Energy Conversion System using Permanent Magnet Synchronous Generator (PMSG) is proposed and also modeled. The system studied in this paper consists of wind energy system powering a battery using a buck-boost converter as an interface. By modifying the buck-boost duty cycle, we vary the reflected voltage at PMSG, and accordingly its speed. It is controlled with Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) approach. The overall system is simulated with MATLAB/SIMULINK.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风能转换系统的创新型最大功率点跟踪技术
本文提出了一种基于最大功率点跟踪的优化控制方案,适用于使用永磁同步发电机(PMSG)的风能转换系统,并对其进行了建模。本文所研究的系统包括使用降压-升压转换器作为接口为电池供电的风能系统。通过改变降压-升压占空比,我们可以改变 PMSG 的反射电压,并相应地改变其速度。该系统采用扰动和观测(P&O)最大功率点跟踪(MPPT)方法进行控制。整个系统通过 MATLAB/SIMULINK 进行仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
期刊最新文献
Optimizing efficiency and analyzing performance: Enhanced airfoil cross-sections for horizontal axis small wind turbines Numerical investigation of the structural-response analysis of a glass/epoxy composite blade for small-scale vertical-axis wind turbine Effective energy management strategy with a novel design of fuzzy logic and JAYA-based controllers in isolated DC/AC microgrids: A comparative analysis PSO-optimized sensor-less sliding mode control for variable speed wind turbine chains based on DPIG with neural-MRAS observer Wind power development: A historical review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1