Yuxia Zheng, Mingke Guo, Xin Zhang, Zehua Xia, Juan Zhao, Siyu Shi
{"title":"Improving the Efficiency of Cement Mortar to Immobilize Sulfate in Industrial Wastewater Using Different Nanoparticles","authors":"Yuxia Zheng, Mingke Guo, Xin Zhang, Zehua Xia, Juan Zhao, Siyu Shi","doi":"10.3390/separations10120586","DOIUrl":null,"url":null,"abstract":"The disposal of industrial wastewater (IWW) discharged from factories is a significant topic in the environment field, and the use of cement-based materials is a useful way to treat materials with unexpected ions. In this work, IWW with abundant SO42− collected from a factory was utilized to prepare cement mortar (IWWCM), and three kinds of nanomaterials (NMs), including nano-SiO2 (NS), nano-CaCO3 (NC), and nano-metakaolin (NMK), were used to improve the performance of IWWCM. The compressive strengths, hydration degree, hydration products, and micropore structure of the specimens were investigated. The test results showed that IWW reduced the strength of the specimens, and the use of NMs could compensate for this strength reduction. To be specific, the 28-day strength of the freshwater (FW) mixed specimen was 44.6 MPa, and the use of IWW decreased this value to 41.8 MPa. However, the strengths of the specimens with NMs were all higher than 50 MPa, indicating the advantage of NMs for the strengths of the IWWCMs. Moreover, the IWWCM showed a lower hydration degree with a poor pore structure, whereas the use of NMs in IWWCMs refined these properties, explaining the strength increase in the specimens. The results of the SO42− content measurements also showed that the use of NMs could improve the SO42− binding ratio, which is conducive to relieving the pressure of IWW disposal for industrial factories.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"29 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10120586","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The disposal of industrial wastewater (IWW) discharged from factories is a significant topic in the environment field, and the use of cement-based materials is a useful way to treat materials with unexpected ions. In this work, IWW with abundant SO42− collected from a factory was utilized to prepare cement mortar (IWWCM), and three kinds of nanomaterials (NMs), including nano-SiO2 (NS), nano-CaCO3 (NC), and nano-metakaolin (NMK), were used to improve the performance of IWWCM. The compressive strengths, hydration degree, hydration products, and micropore structure of the specimens were investigated. The test results showed that IWW reduced the strength of the specimens, and the use of NMs could compensate for this strength reduction. To be specific, the 28-day strength of the freshwater (FW) mixed specimen was 44.6 MPa, and the use of IWW decreased this value to 41.8 MPa. However, the strengths of the specimens with NMs were all higher than 50 MPa, indicating the advantage of NMs for the strengths of the IWWCMs. Moreover, the IWWCM showed a lower hydration degree with a poor pore structure, whereas the use of NMs in IWWCMs refined these properties, explaining the strength increase in the specimens. The results of the SO42− content measurements also showed that the use of NMs could improve the SO42− binding ratio, which is conducive to relieving the pressure of IWW disposal for industrial factories.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization