Analysis of Current Advancement in 3D Point Cloud Semantic Segmentation

Koneru Pranav Sai, Sagar Dhanaraj Pande
{"title":"Analysis of Current Advancement in 3D Point Cloud Semantic Segmentation","authors":"Koneru Pranav Sai, Sagar Dhanaraj Pande","doi":"10.4108/eetiot.4495","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: The division of a 3D point cloud into various meaningful regions or objects is known as point cloud segmentation. OBJECTIVES: The paper discusses the challenges faced in 3D point cloud segmentation, such as the high dimensionality of point cloud data, noise, and varying point densities. METHODS: The paper compares several commonly used datasets in the field, including the ModelNet, ScanNet, S3DIS, and Semantic 3D datasets, ApploloCar3D, and provides an analysis of the strengths and weaknesses of each dataset. Also provides an overview of the papers that uses Traditional clustering techniques, deep learning-based methods, and hybrid approaches in point cloud semantic segmentation. The report also discusses the benefits and drawbacks of each approach. CONCLUSION: This study sheds light on the state of the art in semantic segmentation of 3D point clouds.","PeriodicalId":506477,"journal":{"name":"EAI Endorsed Transactions on Internet of Things","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetiot.4495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

INTRODUCTION: The division of a 3D point cloud into various meaningful regions or objects is known as point cloud segmentation. OBJECTIVES: The paper discusses the challenges faced in 3D point cloud segmentation, such as the high dimensionality of point cloud data, noise, and varying point densities. METHODS: The paper compares several commonly used datasets in the field, including the ModelNet, ScanNet, S3DIS, and Semantic 3D datasets, ApploloCar3D, and provides an analysis of the strengths and weaknesses of each dataset. Also provides an overview of the papers that uses Traditional clustering techniques, deep learning-based methods, and hybrid approaches in point cloud semantic segmentation. The report also discusses the benefits and drawbacks of each approach. CONCLUSION: This study sheds light on the state of the art in semantic segmentation of 3D point clouds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维点云语义分割的最新进展分析
简介: 将三维点云划分为各种有意义的区域或对象称为点云分割。 目标:本文讨论了三维点云分割所面临的挑战,如点云数据的高维性、噪声和不同的点密度。 方法:本文比较了该领域常用的几个数据集,包括 ModelNet、ScanNet、S3DIS 和 Semantic 3D 数据集 ApploloCar3D,并对每个数据集的优缺点进行了分析。报告还概述了在点云语义分割中使用传统聚类技术、基于深度学习的方法和混合方法的论文。报告还讨论了每种方法的优点和缺点。 结论:本研究揭示了三维点云语义分割的技术现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust GAN-Based CNN Model as Generative AI Application for Deepfake Detection Identification of Lithology from Well Log Data Using Machine Learning Crime Prediction using Machine Learning Crime Prediction using Machine Learning Circumventing Stragglers and Staleness in Distributed CNN using LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1