Android Malware Classification Based on Fuzzy Hashing Visualization

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine learning and knowledge extraction Pub Date : 2023-11-28 DOI:10.3390/make5040088
Horacio Rodriguez-Bazan, Grigori Sidorov, P. J. Escamilla-Ambrosio
{"title":"Android Malware Classification Based on Fuzzy Hashing Visualization","authors":"Horacio Rodriguez-Bazan, Grigori Sidorov, P. J. Escamilla-Ambrosio","doi":"10.3390/make5040088","DOIUrl":null,"url":null,"abstract":"The proliferation of Android-based devices has brought about an unprecedented surge in mobile application usage, making the Android ecosystem a prime target for cybercriminals. In this paper, a new method for Android malware classification is proposed. The method implements a convolutional neural network for malware classification using images. The research presents a novel approach to transforming the Android Application Package (APK) into a grayscale image. The image creation utilizes natural language processing techniques for text cleaning, extraction, and fuzzy hashing to represent the decompiled code from the APK in a set of hashes after preprocessing, where the image is composed of n fuzzy hashes that represent an APK. The method was tested on an Android malware dataset with 15,493 samples of five malware types. The proposed method showed an increase in accuracy compared to others in the literature, achieving up to 98.24% in the classification task.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"1 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5040088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of Android-based devices has brought about an unprecedented surge in mobile application usage, making the Android ecosystem a prime target for cybercriminals. In this paper, a new method for Android malware classification is proposed. The method implements a convolutional neural network for malware classification using images. The research presents a novel approach to transforming the Android Application Package (APK) into a grayscale image. The image creation utilizes natural language processing techniques for text cleaning, extraction, and fuzzy hashing to represent the decompiled code from the APK in a set of hashes after preprocessing, where the image is composed of n fuzzy hashes that represent an APK. The method was tested on an Android malware dataset with 15,493 samples of five malware types. The proposed method showed an increase in accuracy compared to others in the literature, achieving up to 98.24% in the classification task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊哈希可视化的安卓恶意软件分类
安卓设备的普及带来了移动应用使用量的空前激增,使安卓生态系统成为网络犯罪分子的首要目标。本文提出了一种新的安卓恶意软件分类方法。该方法利用图像实施卷积神经网络进行恶意软件分类。研究提出了一种将安卓应用程序包(APK)转化为灰度图像的新方法。图像创建利用自然语言处理技术进行文本清理和提取,并利用模糊散列将 APK 的反编译代码表示为一组预处理后的散列,其中图像由表示 APK 的 n 个模糊散列组成。该方法在安卓恶意软件数据集上进行了测试,该数据集包含五种恶意软件类型的 15,493 个样本。与其他文献相比,所提出的方法提高了准确率,在分类任务中的准确率高达 98.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Knowledge Graph Extraction of Business Interactions from News Text for Business Networking Analysis Machine Learning for an Enhanced Credit Risk Analysis: A Comparative Study of Loan Approval Prediction Models Integrating Mental Health Data A Data Mining Approach for Health Transport Demand Predicting Wind Comfort in an Urban Area: A Comparison of a Regression- with a Classification-CNN for General Wind Rose Statistics An Evaluative Baseline for Sentence-Level Semantic Division
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1