Massive rare earth element storage in sub-continental lithospheric mantle initiated by diapirism, not by melting

Geology Pub Date : 2023-11-28 DOI:10.1130/g51102.1
XinXiang Zhu, Yan Liu, Zengqian Hou
{"title":"Massive rare earth element storage in sub-continental lithospheric mantle initiated by diapirism, not by melting","authors":"XinXiang Zhu, Yan Liu, Zengqian Hou","doi":"10.1130/g51102.1","DOIUrl":null,"url":null,"abstract":"Rare earth elements (REEs) are essential metals for modern technologies. Recent studies suggest that subcontinental lithospheric mantle (SCLM) remelting, previously fertilized by subducted marine sediments, leads to formation of REE-bearing rocks. However, the transfer mechanism of REE-rich sediments from the subducted slab to the overlying mantle wedge is unclear. We present high-pressure experiments on natural REE-rich marine sediments at 3–4 GPa and 800–1000 °C to constrain the phase relations, sediment melting behavior, and REE migration during subduction. Our results show recrystallization into an eclogite-like assemblage, with melting only occurring at 4 GPa, 1000 °C, experiments. Regardless of melting behavior, REE are refractory and mostly hosted by apatite. Buoyancy calculations suggest that most of the eclogite-like residues would form solid-state diapirs, ascending to the SCLM, resulting in the REE-fertilized source. Such flux may be required for substantial REE transport during subduction, as a foundation for economic-grade mineralization.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/g51102.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rare earth elements (REEs) are essential metals for modern technologies. Recent studies suggest that subcontinental lithospheric mantle (SCLM) remelting, previously fertilized by subducted marine sediments, leads to formation of REE-bearing rocks. However, the transfer mechanism of REE-rich sediments from the subducted slab to the overlying mantle wedge is unclear. We present high-pressure experiments on natural REE-rich marine sediments at 3–4 GPa and 800–1000 °C to constrain the phase relations, sediment melting behavior, and REE migration during subduction. Our results show recrystallization into an eclogite-like assemblage, with melting only occurring at 4 GPa, 1000 °C, experiments. Regardless of melting behavior, REE are refractory and mostly hosted by apatite. Buoyancy calculations suggest that most of the eclogite-like residues would form solid-state diapirs, ascending to the SCLM, resulting in the REE-fertilized source. Such flux may be required for substantial REE transport during subduction, as a foundation for economic-grade mineralization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大陆下岩石圈地幔中大量稀土元素的储存是由断裂作用而非熔融作用引发的
稀土元素(REEs)是现代技术所必需的金属。最近的研究表明,大陆下岩石圈地幔(SCLM)重熔,以前由俯冲海洋沉积物肥化,导致含稀土元素岩石的形成。然而,富含REE的沉积物从俯冲板块到上覆地幔楔的转移机制尚不清楚。我们对富含REE的天然海洋沉积物在3-4 GPa和800-1000 °C的条件下进行了高压实验,以对俯冲过程中的相关系、沉积物熔融行为和REE迁移进行约束。我们的结果表明,只有在 4 GPa、1000 °C 的实验中才会发生熔融,从而重结晶成类似黝帘石的集合体。无论熔化行为如何,REE 都是难熔的,并且主要由磷灰石寄存。浮力计算表明,大部分类黝帘石残留物将形成固态二阶梯,上升到SCLM,形成REE肥化源。这种通量可能是俯冲过程中REE大量迁移所必需的,是经济品位矿化的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Globally significant mass of terrestrial organic carbon efficiently transported by canyon-flushing turbidity currents Generation of Archean TTGs via sluggish subduction Early Mississippian global δ13C excursion is not a diagenetic artifact Fingerprinting enhanced floodplain reworking during the Paleocene−Eocene Thermal Maximum in the Southern Pyrenees (Spain): Implications for channel dynamics and carbon burial Late Oligocene−Miocene evolution of deep-water circulation in the abyssal South China Sea: Insights from Nd isotopes of fossil fish teeth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1