Megan L. Baker, S. Hage, P. Talling, S. Açikalin, Robert G. Hilton, N. Haghipour, Sean C. Ruffell, E. Pope, Ricardo Silva Jacinto, M. Clare, Sefa Sahin
Burial of organic carbon in marine sediments is a long-term sink of atmospheric CO2, and submarine turbidity currents are volumetrically the most important sediment transport process on Earth. Yet the processes, amounts, and efficiency of organic carbon transfer by turbidity currents through submarine canyons to the deep sea are poorly documented and understood. We present an organic carbon budget for the submarine Congo Canyon, offshore West Africa, constrained with time-lapse bathymetry, sediment cores, and flow monitoring, including the effects of two >1000-km-runout canyon-flushing turbidity currents. In one year, flows eroded an estimated 6.09 ± 2.70 Mt of previously buried terrestrial organic carbon in the canyon, primarily from fine-grained and vegetation-rich muddy sand facies with high organic carbon contents (as high as 11%). The age and composition of organic carbon in the Congo Canyon is comparable to those in the Congo River, indicating that transfer is efficient. Over the whole canyon-channel system, we extrapolate that 43 ± 15 Mt of organic carbon was eroded and transported to the deep (> 5 km) sea, equivalent to 22% of the annual global particulate organic carbon export from rivers to oceans and 54%−108% of the predicted annual terrestrial organic carbon burial in the oceans. Canyon-flushing turbidity currents carried a globally significant mass of terrestrial organic carbon down just one submarine canyon in a single year, indicating their importance for redistribution and delivery of organic carbon to the deep sea.
{"title":"Globally significant mass of terrestrial organic carbon efficiently transported by canyon-flushing turbidity currents","authors":"Megan L. Baker, S. Hage, P. Talling, S. Açikalin, Robert G. Hilton, N. Haghipour, Sean C. Ruffell, E. Pope, Ricardo Silva Jacinto, M. Clare, Sefa Sahin","doi":"10.1130/g51976.1","DOIUrl":"https://doi.org/10.1130/g51976.1","url":null,"abstract":"Burial of organic carbon in marine sediments is a long-term sink of atmospheric CO2, and submarine turbidity currents are volumetrically the most important sediment transport process on Earth. Yet the processes, amounts, and efficiency of organic carbon transfer by turbidity currents through submarine canyons to the deep sea are poorly documented and understood. We present an organic carbon budget for the submarine Congo Canyon, offshore West Africa, constrained with time-lapse bathymetry, sediment cores, and flow monitoring, including the effects of two >1000-km-runout canyon-flushing turbidity currents. In one year, flows eroded an estimated 6.09 ± 2.70 Mt of previously buried terrestrial organic carbon in the canyon, primarily from fine-grained and vegetation-rich muddy sand facies with high organic carbon contents (as high as 11%). The age and composition of organic carbon in the Congo Canyon is comparable to those in the Congo River, indicating that transfer is efficient. Over the whole canyon-channel system, we extrapolate that 43 ± 15 Mt of organic carbon was eroded and transported to the deep (> 5 km) sea, equivalent to 22% of the annual global particulate organic carbon export from rivers to oceans and 54%−108% of the predicted annual terrestrial organic carbon burial in the oceans. Canyon-flushing turbidity currents carried a globally significant mass of terrestrial organic carbon down just one submarine canyon in a single year, indicating their importance for redistribution and delivery of organic carbon to the deep sea.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"60 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141346819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The trondhjemite-tonalite-granodiorite (TTG) suite of rocks prominent in Earth’s Archean continents is thought to form by melting of hydrated basalt, but the specific tectonic settings of formation are unclear. Models for TTG genesis range from melting of downgoing mafic crust during subduction into a hotter mantle to melting at the base of a thick crustal plateau; while neither uniquely defines a global tectonic regime, the former is consistent with mobile lid tectonics and the latter a stagnant lid. One major problem for a subduction model is slabs sinking too quickly and steeply in a hotter mantle to melt downgoing crust. I show, however, that grain size reduction in the lithosphere leads to relatively strong plate boundaries on the early Earth, which slow slab sinking. During this “sluggish subduction,” sinking plates can heat up enough to melt when the mantle temperature is ≳1600 °C. Crustal melting via sluggish subduction can thus explain TTG formation during the Archean due to elevated mantle temperatures and the paucity of TTG production since due to mantle cooling.
{"title":"Generation of Archean TTGs via sluggish subduction","authors":"Bradford J. Foley","doi":"10.1130/g52196.1","DOIUrl":"https://doi.org/10.1130/g52196.1","url":null,"abstract":"The trondhjemite-tonalite-granodiorite (TTG) suite of rocks prominent in Earth’s Archean continents is thought to form by melting of hydrated basalt, but the specific tectonic settings of formation are unclear. Models for TTG genesis range from melting of downgoing mafic crust during subduction into a hotter mantle to melting at the base of a thick crustal plateau; while neither uniquely defines a global tectonic regime, the former is consistent with mobile lid tectonics and the latter a stagnant lid. One major problem for a subduction model is slabs sinking too quickly and steeply in a hotter mantle to melt downgoing crust. I show, however, that grain size reduction in the lithosphere leads to relatively strong plate boundaries on the early Earth, which slow slab sinking. During this “sluggish subduction,” sinking plates can heat up enough to melt when the mantle temperature is ≳1600 °C. Crustal melting via sluggish subduction can thus explain TTG formation during the Archean due to elevated mantle temperatures and the paucity of TTG production since due to mantle cooling.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141347997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marine Prieur, Alexander C. Whittaker, P. Nuriel, Rocío Jaimes-Gutierrez, Eduardo Garzanti, M. Roigé, T. Sømme, Fritz Schlunegger, S. Castelltort
The sedimentary record of the Paleocene−Eocene Thermal Maximum (PETM, ca. 56 Ma) allows the study of feedback mechanisms over the entire duration of a climatic event, from carbon release to the subsequent recovery phase. Clay sedimentation increase in the oceans during the PETM is linked to enhanced terrestrial erosion. Fluvial channel mobility has been invoked to explain this increase in fine sediment export based on more frequent transitional avulsions. In this study, we test whether the reworking of Microcodium (prismatic calcite concretions) from the floodplain to marine environments can serve to fingerprint floodplain reworking due to channel mobility. We quantified the abundance of floodplain-sourced Microcodium grains reworked in fluvial to marine sandstones pre-dating and coeval to the PETM in the Southern Pyrenees (Tremp Basin, Spain). Laser ablation−inductively coupled plasma−mass spectrometry U-Pb ages on calcite confirm the Thanetian age of the Microcodium grains. Our data show a four-fold increase in the export of floodplain sediments to the marine domain during the PETM. Moreover, we show that this is predominantly due to enhanced channel mobility, reworking channel banks and interfluves, with increased erosion in the hinterland as a secondary factor. This increase in floodplain reworking would correspond to an increase in biospheric carbon burial flux by a factor of 2.2. Therefore, enhanced channel mobility and fine-grain sediment transport to the oceans during a climatic perturbation such as the PETM may constitute an important negative feedback mechanism.
{"title":"Fingerprinting enhanced floodplain reworking during the Paleocene−Eocene Thermal Maximum in the Southern Pyrenees (Spain): Implications for channel dynamics and carbon burial","authors":"Marine Prieur, Alexander C. Whittaker, P. Nuriel, Rocío Jaimes-Gutierrez, Eduardo Garzanti, M. Roigé, T. Sømme, Fritz Schlunegger, S. Castelltort","doi":"10.1130/g52180.1","DOIUrl":"https://doi.org/10.1130/g52180.1","url":null,"abstract":"The sedimentary record of the Paleocene−Eocene Thermal Maximum (PETM, ca. 56 Ma) allows the study of feedback mechanisms over the entire duration of a climatic event, from carbon release to the subsequent recovery phase. Clay sedimentation increase in the oceans during the PETM is linked to enhanced terrestrial erosion. Fluvial channel mobility has been invoked to explain this increase in fine sediment export based on more frequent transitional avulsions. In this study, we test whether the reworking of Microcodium (prismatic calcite concretions) from the floodplain to marine environments can serve to fingerprint floodplain reworking due to channel mobility. We quantified the abundance of floodplain-sourced Microcodium grains reworked in fluvial to marine sandstones pre-dating and coeval to the PETM in the Southern Pyrenees (Tremp Basin, Spain). Laser ablation−inductively coupled plasma−mass spectrometry U-Pb ages on calcite confirm the Thanetian age of the Microcodium grains. Our data show a four-fold increase in the export of floodplain sediments to the marine domain during the PETM. Moreover, we show that this is predominantly due to enhanced channel mobility, reworking channel banks and interfluves, with increased erosion in the hinterland as a secondary factor. This increase in floodplain reworking would correspond to an increase in biospheric carbon burial flux by a factor of 2.2. Therefore, enhanced channel mobility and fine-grain sediment transport to the oceans during a climatic perturbation such as the PETM may constitute an important negative feedback mechanism.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"25 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew Braun, Noah T. Anderson, Kristin D. Bergmann, Elizabeth M. Griffith, M. Saltzman
Shallow-water platform carbonate δ13C may provide a record of changes in ocean chemistry through time, but early marine diagenesis and local processes can decouple these records from the global carbon cycle. Recent studies of calcium isotopes (δ44/40Ca) in shallow-water carbonates indicate that δ44/40Ca can be altered during early marine diagenesis, implying that δ13C may also potentially be altered. Here, we tested the hypothesis that the platform carbonate δ13C record of the Kinderhookian-Osagean boundary excursion (KOBE), ∼353 m.y. ago, reflects a period of global diagenesis using paired isotopic (δ44/40Ca and clumped isotopes) and trace-element geochemistry from three sections in the United States. There is little evidence for covariation between δ44/40Ca and δ13C during the KOBE. Clumped isotopes from our shallowest section support primarily sediment-buffered diagenesis at relatively low temperatures. We conclude that the δ13C record of the KOBE as recorded in shallow-water carbonate is consistent with a shift in the dissolved inorganic carbon reservoir and that, more generally, ancient shallow-water carbonates can retain records of primary seawater chemistry.
{"title":"Early Mississippian global δ13C excursion is not a diagenetic artifact","authors":"Matthew Braun, Noah T. Anderson, Kristin D. Bergmann, Elizabeth M. Griffith, M. Saltzman","doi":"10.1130/g52109.1","DOIUrl":"https://doi.org/10.1130/g52109.1","url":null,"abstract":"Shallow-water platform carbonate δ13C may provide a record of changes in ocean chemistry through time, but early marine diagenesis and local processes can decouple these records from the global carbon cycle. Recent studies of calcium isotopes (δ44/40Ca) in shallow-water carbonates indicate that δ44/40Ca can be altered during early marine diagenesis, implying that δ13C may also potentially be altered. Here, we tested the hypothesis that the platform carbonate δ13C record of the Kinderhookian-Osagean boundary excursion (KOBE), ∼353 m.y. ago, reflects a period of global diagenesis using paired isotopic (δ44/40Ca and clumped isotopes) and trace-element geochemistry from three sections in the United States. There is little evidence for covariation between δ44/40Ca and δ13C during the KOBE. Clumped isotopes from our shallowest section support primarily sediment-buffered diagenesis at relatively low temperatures. We conclude that the δ13C record of the KOBE as recorded in shallow-water carbonate is consistent with a shift in the dissolved inorganic carbon reservoir and that, more generally, ancient shallow-water carbonates can retain records of primary seawater chemistry.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"29 33","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A long-term neodymium isotope (εNd) record of fossil fish teeth was investigated to constrain the evolution of deep-water circulation in the abyssal South China Sea (SCS) during the late Oligocene−Miocene (27−10 Ma). Fish teeth samples were collected from the oceanic red beds at International Ocean Discovery Program Expedition 367 Site U1499 (water depth 3758 m). Seawater εNd values (from −7.1 to −4.8, average −6.1) prior to 15 Ma indicate that water masses in the abyssal SCS resulted from the mixing of more radiogenic Upper Circumpolar Deep Water (UCDW, average −4.5) and less radiogenic Lower Circumpolar Deep Water (LCDW, average −6.4). The general decrease in εNd values was attributed to an increasing influence of the unradiogenic LCDW at the studied site, consistent with the subsidence and the associated deepening of the SCS plain. After 15 Ma, seawater εNd dropped significantly to a range of −8.9 to −6.1 (average −7.5), indicating a slowdown in the hydrological connection between the deep-water masses in the SCS and the western Pacific Ocean. We argue that the formation of the Luzon Strait due to the uplift of the Luzon arc in the late Miocene led to the shallowing and narrowing of the SCS-Pacific channels. Consequently, penetration of LCDW was reduced and water masses in the abyssal SCS would have been less ventilated and strongly influenced by lithogenic input from the unradiogenic sediments of large Asian rivers draining the peri-Himalayan region.
{"title":"Late Oligocene−Miocene evolution of deep-water circulation in the abyssal South China Sea: Insights from Nd isotopes of fossil fish teeth","authors":"Wei Shu, Christophe Colin, Zhifei Liu, Arnaud Dapoigny","doi":"10.1130/g52042.1","DOIUrl":"https://doi.org/10.1130/g52042.1","url":null,"abstract":"A long-term neodymium isotope (εNd) record of fossil fish teeth was investigated to constrain the evolution of deep-water circulation in the abyssal South China Sea (SCS) during the late Oligocene−Miocene (27−10 Ma). Fish teeth samples were collected from the oceanic red beds at International Ocean Discovery Program Expedition 367 Site U1499 (water depth 3758 m). Seawater εNd values (from −7.1 to −4.8, average −6.1) prior to 15 Ma indicate that water masses in the abyssal SCS resulted from the mixing of more radiogenic Upper Circumpolar Deep Water (UCDW, average −4.5) and less radiogenic Lower Circumpolar Deep Water (LCDW, average −6.4). The general decrease in εNd values was attributed to an increasing influence of the unradiogenic LCDW at the studied site, consistent with the subsidence and the associated deepening of the SCS plain. After 15 Ma, seawater εNd dropped significantly to a range of −8.9 to −6.1 (average −7.5), indicating a slowdown in the hydrological connection between the deep-water masses in the SCS and the western Pacific Ocean. We argue that the formation of the Luzon Strait due to the uplift of the Luzon arc in the late Miocene led to the shallowing and narrowing of the SCS-Pacific channels. Consequently, penetration of LCDW was reduced and water masses in the abyssal SCS would have been less ventilated and strongly influenced by lithogenic input from the unradiogenic sediments of large Asian rivers draining the peri-Himalayan region.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"66 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L.C. Haaland, T. Slagstad, P. Osmundsen, T. Redfield
Miocene breakup of Svalbard from Greenland formed a deep oceanic gateway that enabled circulation between the Arctic and Atlantic Oceans, significantly changing the global climate. However, the timing of events remains unclear. An excellent opportunity to constrain this timing is found onshore western Svalbard, where the Sarsbukta fault forms the eastern margin of the Eocene−Oligocene Forlandsundet basin. Here, we present new results from U-Pb dating of calcite precipitated in fault-related veins to constrain the timing of Sarsbukta fault deformation and the evolution of the basin. Our oldest calcite age is Permo-Triassic, suggesting long-lived deformation along the fault. A cluster of ages between 41 and 33 Ma overlaps with fossil-based depositional ages from parts of the Forlandsundet basin. These data indicate that onshore transtension partly pre-dated the well-established Chron 13 (magnetic polarity time scale; 35.5−33.7 Ma) reorganization of spreading ridges in the North Atlantic. Our youngest age of 13 Ma indicates that faulting persisted long after the preserved basin fill was deposited. If seafloor spreading marked the end of extension of continental crust, Molloy Ridge spreading during Chron 5 (19.6−9.8 Ma) may have initiated after 13 Ma.
{"title":"U-Pb calcite ages date oblique rifting of the Arctic−North Atlantic gateway","authors":"L.C. Haaland, T. Slagstad, P. Osmundsen, T. Redfield","doi":"10.1130/g52140.1","DOIUrl":"https://doi.org/10.1130/g52140.1","url":null,"abstract":"Miocene breakup of Svalbard from Greenland formed a deep oceanic gateway that enabled circulation between the Arctic and Atlantic Oceans, significantly changing the global climate. However, the timing of events remains unclear. An excellent opportunity to constrain this timing is found onshore western Svalbard, where the Sarsbukta fault forms the eastern margin of the Eocene−Oligocene Forlandsundet basin. Here, we present new results from U-Pb dating of calcite precipitated in fault-related veins to constrain the timing of Sarsbukta fault deformation and the evolution of the basin. Our oldest calcite age is Permo-Triassic, suggesting long-lived deformation along the fault. A cluster of ages between 41 and 33 Ma overlaps with fossil-based depositional ages from parts of the Forlandsundet basin. These data indicate that onshore transtension partly pre-dated the well-established Chron 13 (magnetic polarity time scale; 35.5−33.7 Ma) reorganization of spreading ridges in the North Atlantic. Our youngest age of 13 Ma indicates that faulting persisted long after the preserved basin fill was deposited. If seafloor spreading marked the end of extension of continental crust, Molloy Ridge spreading during Chron 5 (19.6−9.8 Ma) may have initiated after 13 Ma.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141113958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Damien Pas, Maya Elrick, A. Da Silva, Linda Hinnov, Valentin Jamart, Marion Thaureau, Michiel Arts
Middle Cambrian offshore deposits of the Marjum Formation, Utah, USA, are characterized by four scales of superimposed cyclicity defined by varying fine siliciclastic versus limestone abundances; these include limestone-marl couplets (rhythmites; 5−10 cm), which are bundled into parasequences (1−2 m) and small-scale (5−10 m) and large-scale (20−40 m) sequences. Time series analysis of SiO2 and lithologic rank stratigraphic series reveal cycles consistent with Milankovitch periods corresponding to Cambrian orbital eccentricity (20 m, 405 k.y.; ∼6 m 110 k.y.), obliquity (1.8 m, 30 k.y.), climatic precession (1.15 m, ∼18 k.y.), and half-precession (0.64 m, 7 k.y.). Astronomical calibration of the lithologic rank series indicates that the main sub-Milankovitch cycle at 0.065 m represents ∼1 k.y. and corresponds to the basic rhythmite couplet. All scales of cyclicity are interpreted as the result of wet versus dry monsoonal climate oscillations controlling the abundance of fine siliciclastic sediment influx to the basin. A plausible millennial-scale climate driver is solar activity. These results describe one of the oldest known geological candidates for solar-influenced climate change modulated by Milankovitch forcing.
{"title":"Millennial-scale climate cycles modulated by Milankovitch forcing in the middle Cambrian (ca. 500 Ma) Marjum Formation, Utah, USA","authors":"Damien Pas, Maya Elrick, A. Da Silva, Linda Hinnov, Valentin Jamart, Marion Thaureau, Michiel Arts","doi":"10.1130/g52182.1","DOIUrl":"https://doi.org/10.1130/g52182.1","url":null,"abstract":"Middle Cambrian offshore deposits of the Marjum Formation, Utah, USA, are characterized by four scales of superimposed cyclicity defined by varying fine siliciclastic versus limestone abundances; these include limestone-marl couplets (rhythmites; 5−10 cm), which are bundled into parasequences (1−2 m) and small-scale (5−10 m) and large-scale (20−40 m) sequences. Time series analysis of SiO2 and lithologic rank stratigraphic series reveal cycles consistent with Milankovitch periods corresponding to Cambrian orbital eccentricity (20 m, 405 k.y.; ∼6 m 110 k.y.), obliquity (1.8 m, 30 k.y.), climatic precession (1.15 m, ∼18 k.y.), and half-precession (0.64 m, 7 k.y.). Astronomical calibration of the lithologic rank series indicates that the main sub-Milankovitch cycle at 0.065 m represents ∼1 k.y. and corresponds to the basic rhythmite couplet. All scales of cyclicity are interpreted as the result of wet versus dry monsoonal climate oscillations controlling the abundance of fine siliciclastic sediment influx to the basin. A plausible millennial-scale climate driver is solar activity. These results describe one of the oldest known geological candidates for solar-influenced climate change modulated by Milankovitch forcing.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"115 28","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141126348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erin Fitzgerald, Delaney Ryan, D. Scarponi, J. Huntley
Our study uses data from Holocene core samples and modern death assemblages to understand how human-induced environmental change in the northern Adriatic Sea (Italy) may have affected parasite-host dynamics in the economically important bivalve Chamelea gallina. Thirty-one radiocarbon dates confirm temporal distinctness between the periods before and after the onset of significant human influence and confirm that trematode prevalence has decreased by an order of magnitude over the past ∼2 k.y. The median number of parasite-induced pits per bivalve host and parasite aggregation has also decreased significantly, signaling a substantial decrease in the effective population size of digenean trematodes. Gaussian finite mixture modeling of pit size does not support the hypothesis of parasite extinction. Combined, these results indicate the (potentially ongoing) collapse of parasite-host interactions in C. gallina in concert with human influence on the Adriatic and its transition to an urban sea.
{"title":"A sea of change: Tracing parasitic dynamics through the past millennia in the northern Adriatic, Italy","authors":"Erin Fitzgerald, Delaney Ryan, D. Scarponi, J. Huntley","doi":"10.1130/g52187.1","DOIUrl":"https://doi.org/10.1130/g52187.1","url":null,"abstract":"Our study uses data from Holocene core samples and modern death assemblages to understand how human-induced environmental change in the northern Adriatic Sea (Italy) may have affected parasite-host dynamics in the economically important bivalve Chamelea gallina. Thirty-one radiocarbon dates confirm temporal distinctness between the periods before and after the onset of significant human influence and confirm that trematode prevalence has decreased by an order of magnitude over the past ∼2 k.y. The median number of parasite-induced pits per bivalve host and parasite aggregation has also decreased significantly, signaling a substantial decrease in the effective population size of digenean trematodes. Gaussian finite mixture modeling of pit size does not support the hypothesis of parasite extinction. Combined, these results indicate the (potentially ongoing) collapse of parasite-host interactions in C. gallina in concert with human influence on the Adriatic and its transition to an urban sea.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"20 26","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Marie Balbas, Kevin Konrad, Nathan W. Onderdonk, P. Castillo, Richard Behl
The California Borderland is a uniquely broad and complex region of the North American−Pacific transform margin. Oligocene to Miocene structural reorganization, including large-magnitude extension and vertical-axis rotation of crustal blocks, formed a network of submerged fault-bounded basins, ridges, and islands offshore of southern California during its evolution from a convergent to transform boundary. Here, we report new 40Ar/39Ar incremental heating age determinations and geochemical analyses of volcanic rocks in the California Borderland, as well as a reconciled regional tectonic model. The California Borderland volcanic rocks are calc-alkaline in composition and mostly silica-oversaturated and represent relatively large-degree partial melts of the asthenosphere that incorporated hydrated forearc lithospheric components. A temporal reconciliation of these records shows that subduction of an active spreading center starting in the Oligocene and again in the Miocene was the critical control on the observed volcanism at ca. 31−30 Ma and 19−13 Ma. We posit that prolonged trench-ridge interaction generated a blowtorch effect, which resulted in widespread forearc volcanism and weakening of the crust to facilitate the unique deformation styles documented in the borderland that did not occur elsewhere along the North American−Pacific plate boundary.
加利福尼亚边陲是北美-太平洋转换边缘的一个独特而宽广的复杂区域。从渐新世到中新世的结构重组,包括地壳块体的大尺度延伸和垂直轴旋转,在其从汇聚边界到转换边界的演化过程中,形成了一个由水下断层环绕的盆地、海脊和南加州近海岛屿组成的网络。在此,我们报告了新的 40Ar/39Ar 增量加热年龄测定结果和加利福尼亚边界地区火山岩的地球化学分析,以及一个协调的区域构造模型。加利福尼亚边界地区的火山岩成分为钙碱性,大部分为二氧化硅过饱和,代表了包含水合前弧岩石圈成分的相对大度部分熔融的星体层。对这些记录的时间调和表明,从渐新世开始的活跃扩张中心的俯冲以及中新世的俯冲,是在约 31-30 Ma 和 19-13 Ma 出现的火山活动的关键控制因素。31-30 Ma 和 19-13 Ma。我们认为,长期的海沟-海脊相互作用产生了喷火器效应,导致了广泛的弧前火山活动和地壳的减弱,从而促进了边界地区所记录的独特变形方式,而这种变形方式在北美-太平洋板块边界的其他地方并没有出现过。
{"title":"Oligocene and Miocene blowtorch volcanism within the California Borderland and its influence on the plate-boundary transition","authors":"Andrea Marie Balbas, Kevin Konrad, Nathan W. Onderdonk, P. Castillo, Richard Behl","doi":"10.1130/g52175.1","DOIUrl":"https://doi.org/10.1130/g52175.1","url":null,"abstract":"The California Borderland is a uniquely broad and complex region of the North American−Pacific transform margin. Oligocene to Miocene structural reorganization, including large-magnitude extension and vertical-axis rotation of crustal blocks, formed a network of submerged fault-bounded basins, ridges, and islands offshore of southern California during its evolution from a convergent to transform boundary. Here, we report new 40Ar/39Ar incremental heating age determinations and geochemical analyses of volcanic rocks in the California Borderland, as well as a reconciled regional tectonic model. The California Borderland volcanic rocks are calc-alkaline in composition and mostly silica-oversaturated and represent relatively large-degree partial melts of the asthenosphere that incorporated hydrated forearc lithospheric components. A temporal reconciliation of these records shows that subduction of an active spreading center starting in the Oligocene and again in the Miocene was the critical control on the observed volcanism at ca. 31−30 Ma and 19−13 Ma. We posit that prolonged trench-ridge interaction generated a blowtorch effect, which resulted in widespread forearc volcanism and weakening of the crust to facilitate the unique deformation styles documented in the borderland that did not occur elsewhere along the North American−Pacific plate boundary.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"23 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140982123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Á. García-Penas, T. Baumiller, Marcos Aurell, Samuel Zamora
Stalked crinoids were common in shallow-marine habitats in the geologic past but are today restricted to the deep sea. The timing of the shift in their bathymetric distribution has been discussed in the context of the Mesozoic Marine Revolution (MMR), one of the most important episodes of change in marine ecosystems of the Phanerozoic, which is generally thought to have begun sometime in the Late Triassic. However, the record of Cretaceous stalked crinoids is poor, consisting primarily of disarticulated ossicles for which the provenance is often difficult to determine, hampering interpretations of the habitat in which they lived. Here, we report on well-preserved isocrinids from the Aptian and use a multidisciplinary approach involving sedimentological, isotopic, and paleontological data to demonstrate that they inhabited a shallow lagoon subject to salinity variations. This suggests that their absence from such environments today is not a function of physicochemical factors and reinforces the idea that predation pressure may have played a critical role in their bathymetric distribution. The influence of predation is supported by the first Early Cretaceous record of a regenerating arm.
{"title":"Intact stalked crinoids from the late Aptian of NE Spain offer insights into the Mesozoic Marine Revolution in the Tethys","authors":"Á. García-Penas, T. Baumiller, Marcos Aurell, Samuel Zamora","doi":"10.1130/g52179.1","DOIUrl":"https://doi.org/10.1130/g52179.1","url":null,"abstract":"Stalked crinoids were common in shallow-marine habitats in the geologic past but are today restricted to the deep sea. The timing of the shift in their bathymetric distribution has been discussed in the context of the Mesozoic Marine Revolution (MMR), one of the most important episodes of change in marine ecosystems of the Phanerozoic, which is generally thought to have begun sometime in the Late Triassic. However, the record of Cretaceous stalked crinoids is poor, consisting primarily of disarticulated ossicles for which the provenance is often difficult to determine, hampering interpretations of the habitat in which they lived. Here, we report on well-preserved isocrinids from the Aptian and use a multidisciplinary approach involving sedimentological, isotopic, and paleontological data to demonstrate that they inhabited a shallow lagoon subject to salinity variations. This suggests that their absence from such environments today is not a function of physicochemical factors and reinforces the idea that predation pressure may have played a critical role in their bathymetric distribution. The influence of predation is supported by the first Early Cretaceous record of a regenerating arm.","PeriodicalId":503125,"journal":{"name":"Geology","volume":" 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140990366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}