{"title":"Structuring step dependent characteristics in joining using pin-like structures in the vibration welding process","authors":"M. Wolf, D. Drummer","doi":"10.1515/ipp-2023-4419","DOIUrl":null,"url":null,"abstract":"Abstract With this study, correlations in the structuring step of pin-like joining were derived. Increased friction energy due to higher amplitude or force leads to a reduction in structuring time. Changes in thermo-mechanical properties for humid specimens result in increased process times. The theoretical geometry of the pin-like structures is well reproduced in the lower pin area, regardless of the process control. In the upper pin area, increased force and amplitude results in increased defects and air inclusions as a result of an accelerate and more inhomogeneous pin formation. Humidity does not affect the general pin geometry, but should be avoided due to increased air inclusions that can weaken the structure. For the multi-material joints, high bond strengths of up to 30 % of the base material (max. 50 % possible with the geometry used) can be achieved. Therefore, a minimum undercut is required. Once this is reached, the pin defects and the corresponding pin-foot ratio are decisive for the resulting bond quality.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4419","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With this study, correlations in the structuring step of pin-like joining were derived. Increased friction energy due to higher amplitude or force leads to a reduction in structuring time. Changes in thermo-mechanical properties for humid specimens result in increased process times. The theoretical geometry of the pin-like structures is well reproduced in the lower pin area, regardless of the process control. In the upper pin area, increased force and amplitude results in increased defects and air inclusions as a result of an accelerate and more inhomogeneous pin formation. Humidity does not affect the general pin geometry, but should be avoided due to increased air inclusions that can weaken the structure. For the multi-material joints, high bond strengths of up to 30 % of the base material (max. 50 % possible with the geometry used) can be achieved. Therefore, a minimum undercut is required. Once this is reached, the pin defects and the corresponding pin-foot ratio are decisive for the resulting bond quality.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.