Comprehensive treatment and disposal of logistics waste in China: Prospects of biomass resource conversion

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Bioresources Pub Date : 2023-11-28 DOI:10.15376/biores.19.1.ma
Hongzhi Ma, Pin Lv, Chen Wang, Jun Zhou
{"title":"Comprehensive treatment and disposal of logistics waste in China: Prospects of biomass resource conversion","authors":"Hongzhi Ma, Pin Lv, Chen Wang, Jun Zhou","doi":"10.15376/biores.19.1.ma","DOIUrl":null,"url":null,"abstract":"The exponential growth of China’s economy, coupled with the surge in online commerce, has led to a significant expansion of the logistics industry. In 2022, China’s express delivery industry generated approximately 9 million tons of waste paper and 1.8 million tons of plastic. This study analyzed the current composition and utilization of logistics waste in China, with suggestions for recycling. Logistics waste can be defined as the packaging waste generated in the logistics industry. Corrugated paper and plastic waste were chosen as the objects for utilization. Due to its high cellulose content, corrugated paper can be utilized along with other paper waste for biomass resourcing. Biodegradable plastics can also be converted into biomass resources through the action of specific microorganisms. These polymers can be enzymatically depolymerized by certain bacteria and fungi, yielding valuable organic products. In general, logistics wastes all have potential for biomass resource recovery. By adopting appropriate recovery and conversion technologies, these waste streams can be transformed into high-value bio-based products, such as biofuels, biochemicals, and biopolymers, thus contributing to the development of a circular and sustainable economy.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.1.ma","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth of China’s economy, coupled with the surge in online commerce, has led to a significant expansion of the logistics industry. In 2022, China’s express delivery industry generated approximately 9 million tons of waste paper and 1.8 million tons of plastic. This study analyzed the current composition and utilization of logistics waste in China, with suggestions for recycling. Logistics waste can be defined as the packaging waste generated in the logistics industry. Corrugated paper and plastic waste were chosen as the objects for utilization. Due to its high cellulose content, corrugated paper can be utilized along with other paper waste for biomass resourcing. Biodegradable plastics can also be converted into biomass resources through the action of specific microorganisms. These polymers can be enzymatically depolymerized by certain bacteria and fungi, yielding valuable organic products. In general, logistics wastes all have potential for biomass resource recovery. By adopting appropriate recovery and conversion technologies, these waste streams can be transformed into high-value bio-based products, such as biofuels, biochemicals, and biopolymers, thus contributing to the development of a circular and sustainable economy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国物流废弃物的综合处理和处置:生物质资源转化的前景
中国经济的指数级增长,加上在线商务的激增,导致物流业大幅扩张。2022 年,中国快递业产生了约 900 万吨废纸和 180 万吨塑料。本研究分析了中国物流废弃物的构成和利用现状,并提出了回收利用的建议。物流废弃物可定义为物流业产生的包装废弃物。研究选择了瓦楞纸和塑料废弃物作为利用对象。瓦楞纸纤维素含量高,可与其他废纸一起作为生物质资源加以利用。生物降解塑料也可以通过特定微生物的作用转化为生物质资源。某些细菌和真菌可以对这些聚合物进行酶解聚,从而产生有价值的有机产品。总的来说,物流废物都具有生物质资源回收的潜力。通过采用适当的回收和转化技术,这些废物流可以转化为高价值的生物基产品,如生物燃料、生物化学品和生物聚合物,从而促进循环和可持续经济的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresources
Bioresources 工程技术-材料科学:纸与木材
CiteScore
2.90
自引率
13.30%
发文量
397
审稿时长
2.3 months
期刊介绍: The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.
期刊最新文献
Solid-state fermentation for gossypol detoxification and nutritive enrichment of cottonseed cake: A scale-up of batch fermentation process Crystallinity and chemical structure of Amazon wood species in a log yard after natural degradation Aquatic aerobic biodegradation of commonly flushed materials in aerobic wastewater treatment plant solids Mechanical and thermo-mechanical behaviors of snake grass fiber-reinforced epoxy composite Lignin-derived lithiophilic nitrogen-doped three-dimensional porous carbon as lithium growth guiding layers for lithium-metal batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1