A Siamese CNN-BiLSTM-based method for unbalance few-shot fault diagnosis of rolling bearings

Xiyang Liu, Guo Chen, Hao Wang, Xunkai Wei
{"title":"A Siamese CNN-BiLSTM-based method for unbalance few-shot fault diagnosis of rolling bearings","authors":"Xiyang Liu, Guo Chen, Hao Wang, Xunkai Wei","doi":"10.1177/00202940231212146","DOIUrl":null,"url":null,"abstract":"Small and imbalanced fault samples have a profound impact on the diagnostic performance of a model in the process of locating and quantifying the rolling bearing damage of aeroengines in practice. Therefore, a Siamese Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) model was proposed in this paper. Random selection and cross combination methods were used to augment and balance sample sizes at first. Then, two weight-sharing CNN-BiLSTM models were used for adaptive extraction and distance measurement of weak fault features. Finally, the fault classification was performed based on feature distance. Model performance was verified using simulated fault test data of rolling bearings. The results showed that the Siamese CNN-BiLSTM model could achieve an accuracy of up to 96.0% for quantitative diagnosis and 98.0% for location diagnosis. This model was also capable of solving the imbalanced classification of samples and made it possible to transfer between different rotating speeds and working conditions.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231212146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Small and imbalanced fault samples have a profound impact on the diagnostic performance of a model in the process of locating and quantifying the rolling bearing damage of aeroengines in practice. Therefore, a Siamese Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) model was proposed in this paper. Random selection and cross combination methods were used to augment and balance sample sizes at first. Then, two weight-sharing CNN-BiLSTM models were used for adaptive extraction and distance measurement of weak fault features. Finally, the fault classification was performed based on feature distance. Model performance was verified using simulated fault test data of rolling bearings. The results showed that the Siamese CNN-BiLSTM model could achieve an accuracy of up to 96.0% for quantitative diagnosis and 98.0% for location diagnosis. This model was also capable of solving the imbalanced classification of samples and made it possible to transfer between different rotating speeds and working conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于连体 CNN-BiLSTM 的滚动轴承不平衡少发故障诊断方法
在实际定位和量化航空发动机滚动轴承损坏的过程中,小故障样本和不平衡故障样本会对模型的诊断性能产生深远影响。因此,本文提出了连体卷积神经网络-双向长短期记忆(CNN-BiLSTM)模型。首先使用随机选择和交叉组合方法来增加和平衡样本量。然后,使用两个权重共享 CNN-BiLSTM 模型对弱故障特征进行自适应提取和距离测量。最后,根据特征距离进行故障分类。利用滚动轴承的模拟故障测试数据验证了模型的性能。结果表明,连体 CNN-BiLSTM 模型的定量诊断准确率高达 96.0%,定位诊断准确率高达 98.0%。该模型还能解决样本分类不平衡的问题,并能在不同转速和工况之间进行转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network Enhancing water pressure sensing in challenging environments: A strain gage technology integrated with deep learning approach Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization Tracking controller design for quadrotor UAVs under external disturbances using a high-order sliding mode-assisted disturbance observer Evaluating vehicle trafficability on soft ground using wheel force information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1