Junjie Wen, Jie Ma, Yuehua Zhao, Tong Nie, Mengxuan Sun, Ziming Fan
{"title":"Point cloud semantic segmentation based on local feature fusion and multilayer attention network","authors":"Junjie Wen, Jie Ma, Yuehua Zhao, Tong Nie, Mengxuan Sun, Ziming Fan","doi":"10.1049/cvi2.12255","DOIUrl":null,"url":null,"abstract":"<p>Semantic segmentation from a three-dimensional point cloud is vital in autonomous driving, computer vision, and augmented reality. However, current semantic segmentation does not effectively use the point cloud's local geometric features and contextual information, essential for improving segmentation accuracy. A semantic segmentation network that uses local feature fusion and a multilayer attention mechanism is proposed to address these challenges. Specifically, the authors designed a local feature fusion module to encode the geometric and feature information separately, which fully leverages the point cloud's feature perception and geometric structure representation. Furthermore, the authors designed a multilayer attention pooling module consisting of local attention pooling and cascade attention pooling to extract contextual information. Local attention pooling is used to learn local neighbourhood information, and cascade attention pooling captures contextual information from deeper local neighbourhoods. Finally, an enhanced feature representation of important information is obtained by aggregating the features from the two deep attention pooling methods. Extensive experiments on large-scale point-cloud datasets Stanford 3D large-scale indoor spaces and SemanticKITTI indicate that authors network shows excellent advantages over existing representative methods regarding local geometric feature description and global contextual relationships.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 3","pages":"381-392"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12255","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12255","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Semantic segmentation from a three-dimensional point cloud is vital in autonomous driving, computer vision, and augmented reality. However, current semantic segmentation does not effectively use the point cloud's local geometric features and contextual information, essential for improving segmentation accuracy. A semantic segmentation network that uses local feature fusion and a multilayer attention mechanism is proposed to address these challenges. Specifically, the authors designed a local feature fusion module to encode the geometric and feature information separately, which fully leverages the point cloud's feature perception and geometric structure representation. Furthermore, the authors designed a multilayer attention pooling module consisting of local attention pooling and cascade attention pooling to extract contextual information. Local attention pooling is used to learn local neighbourhood information, and cascade attention pooling captures contextual information from deeper local neighbourhoods. Finally, an enhanced feature representation of important information is obtained by aggregating the features from the two deep attention pooling methods. Extensive experiments on large-scale point-cloud datasets Stanford 3D large-scale indoor spaces and SemanticKITTI indicate that authors network shows excellent advantages over existing representative methods regarding local geometric feature description and global contextual relationships.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf