Data-informed uncertainty quantification for wave scattering by heterogeneous media

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED ANZIAM Journal Pub Date : 2023-11-27 DOI:10.21914/anziamj.v64.17965
M. Ganesh, S. C. Hawkins, N. Kordzakhia, Linda Stals
{"title":"Data-informed uncertainty quantification for wave scattering by heterogeneous media","authors":"M. Ganesh, S. C. Hawkins, N. Kordzakhia, Linda Stals","doi":"10.21914/anziamj.v64.17965","DOIUrl":null,"url":null,"abstract":"We present an efficient data-driven offline/online Bayesian algorithm for uncertainty quantification (UQ) in the induced scattered field when a time-harmonic incident wave interacts with an uncertain heterogeneous medium. The incident wave of interest need not be known in advance, and the uncertainty is informed by noisy scattering data obtained from other incident waves impinging on the medium. Our UQ algorithm is accelerated by a novel stochastic reduced order model (ROM) based on the T-matrix, and the ROM is independent of both the incident wave, and other incident waves used to generate the data. This important property allows the model to be set up offline. References M. Bachmayr and A. Djurdjevac. Multilevel representations of isotropic Gaussian random fields on the sphere. IMA J. Numer. Anal. 43.4 (2023), pp. 1970–2000. doi: 10.1093/imanum/drac034 C. Borges and G. Biros. Reconstruction of a compactly supported sound profile in the presence of a random background medium. Inv. Prob. 34, 115007 (2018). doi: 10.1088/1361-6420/aadbc5 on p. C101). Y. Chen. Inv. Prob. 13 (1997), pp. 253–282. doi: 10.1088/0266-5611/13/2/005 D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. 4th. Springer, 2019. doi: 10.1007/978-3-030-30351-8 M. Ganesh and S. C. Hawkins. A far-field based T-matrix method for two dimensional obstacle scattering. Proceedings of the 9th Biennial Engineering Mathematics and Applications Conference, EMAC-2009. Ed. by P. Howlett, M. Nelson, and A. J. Roberts. Vol. 51. ANZIAM J. 2010, pp. C215–C230. doi: 10.21914/anziamj.v51i0.2581 M. Ganesh and S. C. Hawkins. A numerically stable T-matrix method for acoustic scattering by nonspherical particles with large aspect ratios and size parameters. J. Acoust. Soc. Am. 151 (2022), pp. 1978–1988. doi: 10.1121/10.0009679 M. Ganesh and S. C. Hawkins. Algorithm 975: TMATROM–A T-matrix reduced order model software. ACM Trans. Math. Softw. 44, 9 (2017), pp. 1–8. doi: 10.1145/3054945 M. Ganesh, S. C. Hawkins, and R. Hiptmair. Convergence analysis with parameter estimates for a reduced basis acoustic scattering T-matrix method. IMA J. Numer. Anal. 32 (2012), pp. 1348–1374. doi: 10.1093/imanum/drr041 M. Ganesh, S. C. Hawkins, A. M. Tartakovsky, and R. Tipireddy. A stochastic domain decomposition and post-processing algorithm for epistemic uncertainty quantification. Int. J. Uncertain. Quant. 13 (2023), pp. 1–22. doi: 10.1615/Int.J.UncertaintyQuantification.2023045687 S. C. Hawkins. Algorithm 1009: MieSolver–An object-oriented Mie series software for wave scattering by cylinders. ACM Trans. Math. Softw. 46, 19 (2020), pp. 1–28. doi: 10.1145/3381537 on p. C109). S. C. Hawkins. Noisy far-field data. Published online 12th August 2023. doi: 10.5281/zenodo.8240111 T. Hohage. On the numerical solution of a three-dimensional inverse medium scattering problem. Inv. Prob. 17 (2001), pp. 1743–1763. doi: 10.1088/0266-5611/17/6/314 A. Kirsch and P. Monk. An analysis of the coupling of finite-element and Nyström methods in acoustic scattering. IMA J. Numer. Anal 14 (1994), pp. 523–544. doi: 10.1093/imanum/14.4.523 on p. C101). M. Löhndorf and J. M. Melenk. On Thin Plate Spline Interpolation. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Ed. by M. Bittencourt, N. Dumont, and J. Hesthaven. Vol. 119. Lecture Notes in Computational Science and Engineering. Springer, 2017, pp. 451–466. doi: 10.1007/978-3-319-65870-4_32 T. D. Mast. Empirical relationships between acoustic parameters in human soft tissues. Acoust. Res. Lett. Online 1 (2000), pp. 37–42. doi: 10.1121/1.1336896 L. Stals. Efficient Solution Techniques for a Finite Element Thin Plate Spline Formulation. J. Sci. Comput. 63 (2015), pp. 374–409. doi: 10.1007/s10915-014-9898-x K. C. Tam. Two-dimensional inverse Born approximation in ultrasonic flaw characterization. J. Nondestruct. Eval. 5 (1985), pp. 95–106. doi: 10.1007/BF00566959 W. J. Wiscombe. Improved Mie Scattering Algorithms. Appl. Opt. 19 (1980), pp. 1505–1509. doi: 10.1364/AO.19.001505","PeriodicalId":50745,"journal":{"name":"ANZIAM Journal","volume":"82 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANZIAM Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21914/anziamj.v64.17965","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present an efficient data-driven offline/online Bayesian algorithm for uncertainty quantification (UQ) in the induced scattered field when a time-harmonic incident wave interacts with an uncertain heterogeneous medium. The incident wave of interest need not be known in advance, and the uncertainty is informed by noisy scattering data obtained from other incident waves impinging on the medium. Our UQ algorithm is accelerated by a novel stochastic reduced order model (ROM) based on the T-matrix, and the ROM is independent of both the incident wave, and other incident waves used to generate the data. This important property allows the model to be set up offline. References M. Bachmayr and A. Djurdjevac. Multilevel representations of isotropic Gaussian random fields on the sphere. IMA J. Numer. Anal. 43.4 (2023), pp. 1970–2000. doi: 10.1093/imanum/drac034 C. Borges and G. Biros. Reconstruction of a compactly supported sound profile in the presence of a random background medium. Inv. Prob. 34, 115007 (2018). doi: 10.1088/1361-6420/aadbc5 on p. C101). Y. Chen. Inv. Prob. 13 (1997), pp. 253–282. doi: 10.1088/0266-5611/13/2/005 D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. 4th. Springer, 2019. doi: 10.1007/978-3-030-30351-8 M. Ganesh and S. C. Hawkins. A far-field based T-matrix method for two dimensional obstacle scattering. Proceedings of the 9th Biennial Engineering Mathematics and Applications Conference, EMAC-2009. Ed. by P. Howlett, M. Nelson, and A. J. Roberts. Vol. 51. ANZIAM J. 2010, pp. C215–C230. doi: 10.21914/anziamj.v51i0.2581 M. Ganesh and S. C. Hawkins. A numerically stable T-matrix method for acoustic scattering by nonspherical particles with large aspect ratios and size parameters. J. Acoust. Soc. Am. 151 (2022), pp. 1978–1988. doi: 10.1121/10.0009679 M. Ganesh and S. C. Hawkins. Algorithm 975: TMATROM–A T-matrix reduced order model software. ACM Trans. Math. Softw. 44, 9 (2017), pp. 1–8. doi: 10.1145/3054945 M. Ganesh, S. C. Hawkins, and R. Hiptmair. Convergence analysis with parameter estimates for a reduced basis acoustic scattering T-matrix method. IMA J. Numer. Anal. 32 (2012), pp. 1348–1374. doi: 10.1093/imanum/drr041 M. Ganesh, S. C. Hawkins, A. M. Tartakovsky, and R. Tipireddy. A stochastic domain decomposition and post-processing algorithm for epistemic uncertainty quantification. Int. J. Uncertain. Quant. 13 (2023), pp. 1–22. doi: 10.1615/Int.J.UncertaintyQuantification.2023045687 S. C. Hawkins. Algorithm 1009: MieSolver–An object-oriented Mie series software for wave scattering by cylinders. ACM Trans. Math. Softw. 46, 19 (2020), pp. 1–28. doi: 10.1145/3381537 on p. C109). S. C. Hawkins. Noisy far-field data. Published online 12th August 2023. doi: 10.5281/zenodo.8240111 T. Hohage. On the numerical solution of a three-dimensional inverse medium scattering problem. Inv. Prob. 17 (2001), pp. 1743–1763. doi: 10.1088/0266-5611/17/6/314 A. Kirsch and P. Monk. An analysis of the coupling of finite-element and Nyström methods in acoustic scattering. IMA J. Numer. Anal 14 (1994), pp. 523–544. doi: 10.1093/imanum/14.4.523 on p. C101). M. Löhndorf and J. M. Melenk. On Thin Plate Spline Interpolation. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Ed. by M. Bittencourt, N. Dumont, and J. Hesthaven. Vol. 119. Lecture Notes in Computational Science and Engineering. Springer, 2017, pp. 451–466. doi: 10.1007/978-3-319-65870-4_32 T. D. Mast. Empirical relationships between acoustic parameters in human soft tissues. Acoust. Res. Lett. Online 1 (2000), pp. 37–42. doi: 10.1121/1.1336896 L. Stals. Efficient Solution Techniques for a Finite Element Thin Plate Spline Formulation. J. Sci. Comput. 63 (2015), pp. 374–409. doi: 10.1007/s10915-014-9898-x K. C. Tam. Two-dimensional inverse Born approximation in ultrasonic flaw characterization. J. Nondestruct. Eval. 5 (1985), pp. 95–106. doi: 10.1007/BF00566959 W. J. Wiscombe. Improved Mie Scattering Algorithms. Appl. Opt. 19 (1980), pp. 1505–1509. doi: 10.1364/AO.19.001505
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异质介质波散射的数据信息不确定性量化
我们提出了一种高效的数据驱动离线/在线贝叶斯算法,用于时谐入射波与不确定的异质介质相互作用时的诱导散射场不确定性量化(UQ)。相关入射波不需要事先知道,不确定性可以从其他入射波撞击介质时获得的噪声散射数据中获得。我们的 UQ 算法通过基于 T 矩阵的新型随机减阶模型 (ROM) 进行加速,该 ROM 与入射波和用于生成数据的其他入射波无关。这一重要特性允许离线设置模型。参考文献 M. Bachmayr 和 A. Djurdjevac.球面上各向同性高斯随机场的多级表示。IMA J. Numer.Anal.43.4 (2023),pp. 1970-2000。doi: 10.1093/imanum/drac034 C. Borges and G. Biros.存在随机背景介质时紧凑支撑声音轮廓的重建.Inv. Prob. 34, 115007 (2018). doi: 10.1088/1361-6420/aadbc5 on p. C101).Y. Chen.Inv. Prob. 13 (1997), pp.Colton and R. Kress.反声学和电磁散射理论》。第 4 版。DOI: 10.1007/978-3-030-30351-8 M. Ganesh and S. C. Hawkins.基于远场的二维障碍物散射 T 矩阵方法》。第 9 届双年工程数学与应用会议论文集,EMAC-2009。由 P. Howlett、M. Nelson 和 A. J. Roberts 编辑。第 51 卷。C215-C230. doi: 10.21914/anziamj.v51i0.2581 M. Ganesh and S. C. Hawkins.大长径比和尺寸参数非球形颗粒声散射的数值稳定 T 矩阵方法.J. Acoust.151 (2022), pp.算法 975:TMATROM-A T 矩阵降阶模型软件。ACM Trans.Math.Softw.44, 9 (2017), pp.减基声学散射 T 矩阵方法的收敛分析与参数估计。IMA J. Numer.Anal.doi: 10.1093/imanum/drr041 M. Ganesh, S. C. Hawkins, A. M. Tartakovsky, and R. Tipireddy.用于认识不确定性量化的随机领域分解和后处理算法.Int. J. Uncertain.J. Uncertain.Quant.doi: 10.1615/Int.J.UncertaintyQuantification.2023045687 S. C. Hawkins.算法 1009:MieSolver-An object-oriented Mie series software for wave scattering by cylinders.ACM Trans.Math. Softw.Softw.46, 19 (2020), pp.)S. C. Hawkins.噪声远场数据。doi: 10.5281/zenodo.8240111 T. Hohage.关于三维反向介质散射问题的数值解。Inv. Prob. 17 (2001), pp.Kirsch and P. Monk.声散射中有限元与 Nyström 方法耦合分析.IMA J. Numer.doi: 10.1093/imanum/14.4.523 on p. C101).M. Löhndorf and J. M. Melenk.论薄板样条插值。Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016.由 M. Bittencourt、N. Dumont 和 J. Hesthaven 编辑。第 119 卷。计算科学与工程讲义》。Springer 出版社,2017 年,第 451-466 页。DOI:10.1007/978-3-319-65870-4_32 T. D. Mast.人体软组织声学参数之间的经验关系。Acoust.Res.Lett.doi: 10.1121/1.1336896 L. Stals.有限元薄板样条公式的高效求解技术。J. Sci.63 (2015), pp.超声波缺陷表征中的二维反玻恩近似。J. Nondestruct.Eval.5 (1985), pp.改进的米氏散射算法。19 (1980), pp.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ANZIAM Journal
ANZIAM Journal 数学-应用数学
CiteScore
1.30
自引率
11.10%
发文量
16
审稿时长
1 months
期刊介绍: The ANZIAM Journal considers papers in any field of applied mathematics and related mathematical sciences with the aim of rapid publication in print and electronic formats. Novel applications of mathematics in real situations are especially welcomed. All papers should include some indication of applicability, and an introduction that can be understood by non-specialist readers from the whole applied mathematical community.
期刊最新文献
Data-informed uncertainty quantification for wave scattering by heterogeneous media THE METRIC OPERATORS FOR PSEUDO-HERMITIAN HAMILTONIAN NUMERICAL ANALYSIS OF APPARATUS-INDUCED DISPERSION FOR DENSITY-DEPENDENT SOLUTE TRANSPORT IN POROUS MEDIA ANZ VOLUME 65 ISSUE 1-2 COVER AND BACK MATTER ANZ VOLUME 65 ISSUE 1-2 COVER AND FRONT MATTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1