Pushpa Nidhi Gautam, C. Pokharel, G. R. Phaijoo, Parameshwari Kattel, J. Kafle
{"title":"Effect of increasing stenosis over time on hemodynamics","authors":"Pushpa Nidhi Gautam, C. Pokharel, G. R. Phaijoo, Parameshwari Kattel, J. Kafle","doi":"10.55630/j.biomath.2023.10.067","DOIUrl":null,"url":null,"abstract":"A hard layer, that develops in the inner wall of an artery, makes the blood flow difficult and it can harm the cardiovascular system because of the abnormality in blood supply. The problem becomes worse when the layer gets thicker due to increased deposition over time. The effect of increasing stenosis on flow characteristics in an artery is studied by taking blood as a non-Newtonian fluid. To address the effect of increasing stenosis over time, a non-dimensional temporal term is included in the geometry of stenosis and is applied to derive the flow parameters like velocity profile, volumetric flow rate and pressure drop. The maximum and minimum shear stress ratio and pressure drop ratio are also calculated using the term. The results obtained are analyzed to show the effect of increasing stenosis over time on these flow parameters. Volumetric flow rate, pressure drop and its ratio, and shear stress ratio are compared with the ratio of the thickness of the stenosis and normal artery radius while analyzing the results. It is found that the volumetric flow rate decreases with time, pressure drop and its ratio increases with time, and the shear stress ratio decreases as the time elapses. The result shows that it is appropriate to include the temporal term to understand the effect of increasing stenosis over time on blood flow parameters. The aim of this article is to correct the drawback that evolves while supposing the symmetric shape of the stenosis.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/j.biomath.2023.10.067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
A hard layer, that develops in the inner wall of an artery, makes the blood flow difficult and it can harm the cardiovascular system because of the abnormality in blood supply. The problem becomes worse when the layer gets thicker due to increased deposition over time. The effect of increasing stenosis on flow characteristics in an artery is studied by taking blood as a non-Newtonian fluid. To address the effect of increasing stenosis over time, a non-dimensional temporal term is included in the geometry of stenosis and is applied to derive the flow parameters like velocity profile, volumetric flow rate and pressure drop. The maximum and minimum shear stress ratio and pressure drop ratio are also calculated using the term. The results obtained are analyzed to show the effect of increasing stenosis over time on these flow parameters. Volumetric flow rate, pressure drop and its ratio, and shear stress ratio are compared with the ratio of the thickness of the stenosis and normal artery radius while analyzing the results. It is found that the volumetric flow rate decreases with time, pressure drop and its ratio increases with time, and the shear stress ratio decreases as the time elapses. The result shows that it is appropriate to include the temporal term to understand the effect of increasing stenosis over time on blood flow parameters. The aim of this article is to correct the drawback that evolves while supposing the symmetric shape of the stenosis.