Integrating mixed reality technologies in genomic data visualization and analysis for bioinformatics research

Q2 Agricultural and Biological Sciences Biomath Pub Date : 2024-05-15 DOI:10.55630/j.biomath.2024.03.126
Tereza Trencheva, Ivan Trenchev, Iglika Getova, Miglena Trencheva
{"title":"Integrating mixed reality technologies in genomic data visualization and analysis for bioinformatics research","authors":"Tereza Trencheva, Ivan Trenchev, Iglika Getova, Miglena Trencheva","doi":"10.55630/j.biomath.2024.03.126","DOIUrl":null,"url":null,"abstract":"With the advancement of Mixed Reality (MR) technologies and bioinformatics, researchers are exploring new ways to enhance the visualization and analysis of genomic data. The integration of MR technologies in bioinformatics research has the potential to revolutionize the way scientists interpret complex biological information. This article discusses the application of MR in genomic data visualization and analysis, highlighting its advantages in facilitating a more immersive and interactive experience. In particular, we will present case studies related to the implementation of the Unreal Engine in MR for bioinformatics research.\nAs part of the research, the role of intellectual property in bioinformatics will be analyzed, providing insights into its significance and implications in the field. The integration of MR can improve collaboration among researchers and assist in the understanding of intricate patterns within genomic datasets. Furthermore, the article examines the challenges faced in implementing MR technologies in bioinformatics and addresses possible solutions to overcome these obstacles.\nOverall, the integration of MR in bioinformatics research has the potential to reshape the field and drive innovation in genomic data analysis.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/j.biomath.2024.03.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of Mixed Reality (MR) technologies and bioinformatics, researchers are exploring new ways to enhance the visualization and analysis of genomic data. The integration of MR technologies in bioinformatics research has the potential to revolutionize the way scientists interpret complex biological information. This article discusses the application of MR in genomic data visualization and analysis, highlighting its advantages in facilitating a more immersive and interactive experience. In particular, we will present case studies related to the implementation of the Unreal Engine in MR for bioinformatics research. As part of the research, the role of intellectual property in bioinformatics will be analyzed, providing insights into its significance and implications in the field. The integration of MR can improve collaboration among researchers and assist in the understanding of intricate patterns within genomic datasets. Furthermore, the article examines the challenges faced in implementing MR technologies in bioinformatics and addresses possible solutions to overcome these obstacles. Overall, the integration of MR in bioinformatics research has the potential to reshape the field and drive innovation in genomic data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将混合现实技术融入基因组数据可视化和分析,促进生物信息学研究
随着混合现实(MR)技术和生物信息学的发展,研究人员正在探索加强基因组数据可视化和分析的新方法。将混合现实技术融入生物信息学研究有可能彻底改变科学家解读复杂生物信息的方式。本文将讨论磁共振技术在基因组数据可视化和分析中的应用,强调其在促进更身临其境的互动体验方面的优势。作为研究的一部分,我们将分析知识产权在生物信息学中的作用,深入探讨其在该领域的意义和影响。整合磁共振技术可以改善研究人员之间的合作,帮助理解基因组数据集中错综复杂的模式。此外,文章还探讨了在生物信息学中实施磁共振技术所面临的挑战,并提出了克服这些障碍的可能解决方案。总之,将磁共振技术整合到生物信息学研究中,有可能重塑该领域并推动基因组数据分析的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
期刊最新文献
Analysis of hemodynamic parameters on two-layered blood flow in a curved artery Comparative analysis of two chemostat models including substrate and biomass inhibitions Integrating mixed reality technologies in genomic data visualization and analysis for bioinformatics research Dynamical analysis combined with parameter identification for a model of infection in honeybee colonies with social immunity Parameter sensitivity analysis for CO-mediated sickle cell de-polymerization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1