Ultrahigh frequency vibration control in a piezoelectric phononic crystal beam at the nanoscale considering surface effects

IF 0.6 4区 工程技术 Q4 MECHANICS Journal of Theoretical and Applied Mechanics Pub Date : 2023-11-26 DOI:10.15632/jtam-pl/174870
Zexin Zhang, Denghui Qian, Long Ren, Qi Wang
{"title":"Ultrahigh frequency vibration control in a piezoelectric phononic crystal beam at the nanoscale considering surface effects","authors":"Zexin Zhang, Denghui Qian, Long Ren, Qi Wang","doi":"10.15632/jtam-pl/174870","DOIUrl":null,"url":null,"abstract":"In this paper, a piezoelectric phononic crystal beam at the nanoscale has been mechanically modeled by using the surface piezoelectric theory. The band gap has been calculated by the plane wave expansion method and the band gap structure picture has been analyzed. The influence of electromechanical coupling effects, surface effects and geometry on the band gap properties are discussed separately. This study contributes positively to the design and active control of nanoelectromechanical systems.","PeriodicalId":49980,"journal":{"name":"Journal of Theoretical and Applied Mechanics","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15632/jtam-pl/174870","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a piezoelectric phononic crystal beam at the nanoscale has been mechanically modeled by using the surface piezoelectric theory. The band gap has been calculated by the plane wave expansion method and the band gap structure picture has been analyzed. The influence of electromechanical coupling effects, surface effects and geometry on the band gap properties are discussed separately. This study contributes positively to the design and active control of nanoelectromechanical systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑表面效应的纳米级压电声子晶体束的超高频振动控制
本文利用表面压电理论对纳米尺度的压电声子晶体束进行了力学建模。通过平面波展开法计算了带隙,并分析了带隙结构图。分别讨论了机电耦合效应、表面效应和几何形状对带隙特性的影响。该研究为纳米机电系统的设计和主动控制做出了积极贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
22
审稿时长
6 months
期刊介绍: The scope of JTAM contains: - solid mechanics - fluid mechanics - fluid structures interactions - stability and vibrations systems - robotic and control systems - mechanics of materials - dynamics of machines, vehicles and flying structures - inteligent systems - nanomechanics - biomechanics - computational mechanics
期刊最新文献
Research on vibration characteristics of motorized spindle at high speed based on power flow Laboratory study of the dynamic fracture in pre-drilled boreholes and the associated host rock behaviours Unsteady body force model for rotating stall in axial compressor with various inlet conditions Bending of a sandwich beam with an individual functionally graded core Ultrahigh frequency vibration control in a piezoelectric phononic crystal beam at the nanoscale considering surface effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1