A. Alfakeeh, M. S. Sharif, A. Zorto, Thiago Pillonetto
{"title":"Conditional Tabular Generative Adversarial Net for Enhancing Ensemble Classifiers in Sepsis Diagnosis","authors":"A. Alfakeeh, M. S. Sharif, A. Zorto, Thiago Pillonetto","doi":"10.1155/2023/8819052","DOIUrl":null,"url":null,"abstract":"Antibiotic-resistant bacteria have proliferated at an alarming rate as a result of the extensive use of antibiotics and the paucity of new medication research. The possibility that an antibiotic-resistant bacterial infection would progress to sepsis is one of the major collateral problems affecting people with this condition. 31,000 lives were lost due to sepsis in England with costs about two billion pounds annually. This research aims to develop and evaluate several classification approaches to improve predicting sepsis and reduce the tendency of underdiagnosis in computer-aided predictive tools. This research employs medical datasets for patients diagnosed with sepsis, and it analyses the efficacy of ensemble machine learning techniques compared to nonensemble machine learning techniques and the significance of data balancing and conditional tabular generative adversarial nets for data augmentation in producing reliable diagnosis. The average F Score obtained by the nonensemble models trained in this paper is 0.83 compared to the ensemble techniques average of 0.94. Nonensemble techniques, such as Decision Tree, achieved an F score of 0.90, an AUC of 0.90, and an accuracy of 90%. Histogram-basedgradient boosting classification tree achieved an F score of 0.96, an AUC of 0.96, and an accuracy of 95%, surpassing the other models tested. Additionally, when compared to the current state-of-the-art sepsis prediction models, the models developed in this study demonstrated higher average performance in all metrics, indicating reduced bias and improved robustness through data balancing and conditional tabular generative adversarial nets for data augmentation. The study revealed that data balancing and augmentation on the ensemble machine learning algorithms boost the efficacy of clinical predictive models and can help clinics decide which data types are most important when examining patients and diagnosing sepsis early through intelligent human-machine interface.","PeriodicalId":44894,"journal":{"name":"Applied Computational Intelligence and Soft Computing","volume":"35 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Intelligence and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8819052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic-resistant bacteria have proliferated at an alarming rate as a result of the extensive use of antibiotics and the paucity of new medication research. The possibility that an antibiotic-resistant bacterial infection would progress to sepsis is one of the major collateral problems affecting people with this condition. 31,000 lives were lost due to sepsis in England with costs about two billion pounds annually. This research aims to develop and evaluate several classification approaches to improve predicting sepsis and reduce the tendency of underdiagnosis in computer-aided predictive tools. This research employs medical datasets for patients diagnosed with sepsis, and it analyses the efficacy of ensemble machine learning techniques compared to nonensemble machine learning techniques and the significance of data balancing and conditional tabular generative adversarial nets for data augmentation in producing reliable diagnosis. The average F Score obtained by the nonensemble models trained in this paper is 0.83 compared to the ensemble techniques average of 0.94. Nonensemble techniques, such as Decision Tree, achieved an F score of 0.90, an AUC of 0.90, and an accuracy of 90%. Histogram-basedgradient boosting classification tree achieved an F score of 0.96, an AUC of 0.96, and an accuracy of 95%, surpassing the other models tested. Additionally, when compared to the current state-of-the-art sepsis prediction models, the models developed in this study demonstrated higher average performance in all metrics, indicating reduced bias and improved robustness through data balancing and conditional tabular generative adversarial nets for data augmentation. The study revealed that data balancing and augmentation on the ensemble machine learning algorithms boost the efficacy of clinical predictive models and can help clinics decide which data types are most important when examining patients and diagnosing sepsis early through intelligent human-machine interface.
期刊介绍:
Applied Computational Intelligence and Soft Computing will focus on the disciplines of computer science, engineering, and mathematics. The scope of the journal includes developing applications related to all aspects of natural and social sciences by employing the technologies of computational intelligence and soft computing. The new applications of using computational intelligence and soft computing are still in development. Although computational intelligence and soft computing are established fields, the new applications of using computational intelligence and soft computing can be regarded as an emerging field, which is the focus of this journal.