Impact of different parameters in the drilling of CFRPs with nanocrystalline diamond coated tools

Rúben Costa
{"title":"Impact of different parameters in the drilling of CFRPs with nanocrystalline diamond coated tools","authors":"Rúben Costa","doi":"10.24840/2183-6493_009-005_002152","DOIUrl":null,"url":null,"abstract":"The drilling process of composite materials, such as the carbon fiber reinforced polymer (CFRP), constitutes a challenging task due to their inhomogeneous and anisotropic characteristics, besides the highly abrasive wear behaviour of their fibers. Accordingly, machining parameters should be carefully studied to optimize the process, leading to a better surface quality (avoiding defects in the CFRP) and to a lower wear behaviour of the cutting tool. This study proposed to test the drilling of a CFRP with a thermoplastic matrix using two different tool geometries (conventional and double-point angle drill) and varying two parameters, feed (f) and spindle speed (n), each one with two levels. It was concluded that the double-point angle drill with lower spindle speeds generates lower thrust force and torque values, as well as better hole quality. Higher spindle speeds combined with lower feeds result in fractured chips, in contrast with continuous chips for the other combinations.","PeriodicalId":36339,"journal":{"name":"U.Porto Journal of Engineering","volume":"2014 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"U.Porto Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24840/2183-6493_009-005_002152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The drilling process of composite materials, such as the carbon fiber reinforced polymer (CFRP), constitutes a challenging task due to their inhomogeneous and anisotropic characteristics, besides the highly abrasive wear behaviour of their fibers. Accordingly, machining parameters should be carefully studied to optimize the process, leading to a better surface quality (avoiding defects in the CFRP) and to a lower wear behaviour of the cutting tool. This study proposed to test the drilling of a CFRP with a thermoplastic matrix using two different tool geometries (conventional and double-point angle drill) and varying two parameters, feed (f) and spindle speed (n), each one with two levels. It was concluded that the double-point angle drill with lower spindle speeds generates lower thrust force and torque values, as well as better hole quality. Higher spindle speeds combined with lower feeds result in fractured chips, in contrast with continuous chips for the other combinations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用纳米晶金刚石涂层工具钻孔加工 CFRP 时不同参数的影响
由于碳纤维增强聚合物(CFRP)等复合材料的不均匀性和各向异性特征,以及其纤维的高磨损性,复合材料的钻孔加工是一项具有挑战性的任务。因此,应仔细研究加工参数以优化加工过程,从而获得更好的表面质量(避免 CFRP 中的缺陷)和更低的切削刀具磨损。本研究建议使用两种不同的刀具几何形状(传统钻头和双点角钻头),并改变进给量(f)和主轴转速(n)这两个参数(每个参数都有两个等级),对带有热塑性基体的 CFRP 进行钻孔测试。结果表明,主轴转速较低的双点角钻产生的推力和扭矩值较低,孔的质量也较好。主轴转速越高,进给量越小,切屑越碎,而其他组合则切屑连续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
U.Porto Journal of Engineering
U.Porto Journal of Engineering Engineering-Engineering (all)
CiteScore
0.70
自引率
0.00%
发文量
58
审稿时长
20 weeks
期刊最新文献
Utilizing Heuristics and Metaheuristics for Solving the Set Covering Problem A Comparative Analysis of Machine Learning Models in News Categorization Pompan: A bread production alternative using apple pomace PHArmed: A Biological Process for PHA Production from Apple Waste Residues Editoral
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1