A Comparative Analysis of Machine Learning Models in News Categorization

M. H. Zolfagharnasab, Siavash Damari
{"title":"A Comparative Analysis of Machine Learning Models in News Categorization","authors":"M. H. Zolfagharnasab, Siavash Damari","doi":"10.24840/2183-6493_0010-003_002464","DOIUrl":null,"url":null,"abstract":"The constant stream of news nowadays highlights the necessity for meticulous assessment to ensure that the information accurately reaches its intended audience with the least amount of delay least delay. Despite the flexibility and efficiency of Deep Learning (DL) models, their intricate training and substantial resource demands pose significant challenges for their deployment in real-time applications. In this regard, this study evaluates the performance of resource-efficient Machine Learning (ML) techniques – Multinomial Naive Bayes (MNB), Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR) – in categorizing news. Based on the results, all the evaluated models attain a commendable level of accuracy in news categorization. Notably, the SVM excels, achieving an accuracy rate of 98% and a mean squared error of 0.28. This performance exemplifies the robust effectiveness of classical ML models in the categorization of news, particularly when enhanced by a suitably tailored preprocessing pipeline.","PeriodicalId":36339,"journal":{"name":"U.Porto Journal of Engineering","volume":"18 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"U.Porto Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24840/2183-6493_0010-003_002464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The constant stream of news nowadays highlights the necessity for meticulous assessment to ensure that the information accurately reaches its intended audience with the least amount of delay least delay. Despite the flexibility and efficiency of Deep Learning (DL) models, their intricate training and substantial resource demands pose significant challenges for their deployment in real-time applications. In this regard, this study evaluates the performance of resource-efficient Machine Learning (ML) techniques – Multinomial Naive Bayes (MNB), Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR) – in categorizing news. Based on the results, all the evaluated models attain a commendable level of accuracy in news categorization. Notably, the SVM excels, achieving an accuracy rate of 98% and a mean squared error of 0.28. This performance exemplifies the robust effectiveness of classical ML models in the categorization of news, particularly when enhanced by a suitably tailored preprocessing pipeline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新闻分类中机器学习模型的比较分析
如今,新闻源源不断,这凸显了进行细致评估的必要性,以确保信息在最少延迟的情况下准确送达目标受众。尽管深度学习(DL)模型具有灵活性和高效性,但其复杂的训练和大量的资源需求为其在实时应用中的部署带来了巨大挑战。为此,本研究评估了资源节约型机器学习(ML)技术--多项式直觉贝叶斯(MNB)、随机森林(RF)、支持向量机(SVM)和逻辑回归(LR)--在新闻分类方面的性能。从结果来看,所有评估模型在新闻分类方面都达到了值得称赞的准确度。值得注意的是,SVM 的准确率高达 98%,平均平方误差为 0.28。这一表现充分体现了经典 ML 模型在新闻分类中的强大功效,尤其是在通过适当定制的预处理管道进行增强的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
U.Porto Journal of Engineering
U.Porto Journal of Engineering Engineering-Engineering (all)
CiteScore
0.70
自引率
0.00%
发文量
58
审稿时长
20 weeks
期刊最新文献
Utilizing Heuristics and Metaheuristics for Solving the Set Covering Problem A Comparative Analysis of Machine Learning Models in News Categorization Pompan: A bread production alternative using apple pomace PHArmed: A Biological Process for PHA Production from Apple Waste Residues Editoral
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1