Pros and Cons of Separation, Fractionation and Cleanup for Enhancement of the Quantitative Analysis of Bitumen-Derived Organics in Process-Affected Waters—A Review

IF 2.5 4区 工程技术 Q3 CHEMISTRY, ANALYTICAL Separations Pub Date : 2023-11-24 DOI:10.3390/separations10120583
Ralph Hindle, J. Headley, D. Muench
{"title":"Pros and Cons of Separation, Fractionation and Cleanup for Enhancement of the Quantitative Analysis of Bitumen-Derived Organics in Process-Affected Waters—A Review","authors":"Ralph Hindle, J. Headley, D. Muench","doi":"10.3390/separations10120583","DOIUrl":null,"url":null,"abstract":"Oil sands process-affected water (OSPW) contains a diverse mixture of inorganic and organic compounds. Naphthenic acids (NAs) are a subset of the organic naphthenic acid fraction compounds (NAFCs) and are a major contributor of toxicity to aquatic species. Thousands of unique chemical formulae are measured in OSPW by accurate mass spectrometry and high-resolution mass spectrometry (MS) analysis of NAFCs. As no commercial reference standard is available to cover the range of compounds present in NAFCs, quantitation may best be referred to as “semi-quantitative” and is based on the responses of one or more model compounds. Negative mode electrospray ionization (ESI-) is often used for NAFC measurement but is prone to ion suppression in complex matrices. This review discusses aspects of off-line sample preparation techniques and liquid chromatography (LC) separations to help reduce ion suppression effects and improve the comparability of both inter-laboratory and intra-laboratory results. Alternative approaches to the analytical parameters discussed include extraction solvents, salt content of samples, extraction pH, off-line sample cleanup, on-line LC chromatography, calibration standards, MS ionization modes, NAFC compound classes, MS mass resolution, and the use of internal standards.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"2006 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10120583","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oil sands process-affected water (OSPW) contains a diverse mixture of inorganic and organic compounds. Naphthenic acids (NAs) are a subset of the organic naphthenic acid fraction compounds (NAFCs) and are a major contributor of toxicity to aquatic species. Thousands of unique chemical formulae are measured in OSPW by accurate mass spectrometry and high-resolution mass spectrometry (MS) analysis of NAFCs. As no commercial reference standard is available to cover the range of compounds present in NAFCs, quantitation may best be referred to as “semi-quantitative” and is based on the responses of one or more model compounds. Negative mode electrospray ionization (ESI-) is often used for NAFC measurement but is prone to ion suppression in complex matrices. This review discusses aspects of off-line sample preparation techniques and liquid chromatography (LC) separations to help reduce ion suppression effects and improve the comparability of both inter-laboratory and intra-laboratory results. Alternative approaches to the analytical parameters discussed include extraction solvents, salt content of samples, extraction pH, off-line sample cleanup, on-line LC chromatography, calibration standards, MS ionization modes, NAFC compound classes, MS mass resolution, and the use of internal standards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过分离、分馏和净化加强对受加工影响水体中沥青衍生有机物定量分析的利弊--综述
受油砂加工影响的水(OSPW)含有多种无机和有机混合物。环烷酸 (NA) 是有机环烷酸馏分化合物 (NAFC) 的一个子集,是对水生物种产生毒性的主要因素。通过对 NAFCs 进行精确的质谱分析和高分辨率质谱分析,可在 OSPW 中测量到数千种独特的化学式。由于没有商业参考标准来涵盖 NAFCs 中存在的各种化合物,因此最好将定量称为 "半定量",并以一种或多种模型化合物的反应为基础。负离子电喷雾电离 (ESI-) 通常用于 NAFC 测量,但在复杂基质中容易出现离子抑制。本综述讨论了离线样品制备技术和液相色谱分离技术的各个方面,以帮助减少离子抑制效应,提高实验室间和实验室内结果的可比性。所讨论的分析参数的替代方法包括萃取溶剂、样品含盐量、萃取 pH 值、离线样品净化、在线液相色谱法、校准标准、质谱电离模式、NAFC 化合物类别、质谱质量分辨率以及内标物的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separations
Separations Chemistry-Analytical Chemistry
CiteScore
3.00
自引率
15.40%
发文量
342
审稿时长
12 weeks
期刊介绍: Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Manuscripts regarding research proposals and research ideas will be particularly welcomed. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users. The scope of the journal includes but is not limited to: Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.) Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry) Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization
期刊最新文献
Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction Central European Group for Separation Sciences (CEGSS)—Brief History and Memoirs on the Creation and Activity Effect of Fly Ash on the Mass Transfer Performance of CO2 Removal Using MEA and DEA Solutions in a Packed Tower Adsorption Performance and Mechanism of H3PO4-Modified Banana Peel Hydrothermal Carbon on Pb(II)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1