Shockwave and crack monitoring following nonlinear absorption with picosecond time-resolved microscopic imaging

Laser Damage Pub Date : 2023-11-24 DOI:10.1117/12.2685245
Matthew R. Ross, Jue Wang
{"title":"Shockwave and crack monitoring following nonlinear absorption with picosecond time-resolved microscopic imaging","authors":"Matthew R. Ross, Jue Wang","doi":"10.1117/12.2685245","DOIUrl":null,"url":null,"abstract":"Many damage morphologies are possible following irradiation of materials with an intense laser beam. We present ultrafast time-resolved microscopic imaging of materials immediately following laser-matter interaction. In the case of transparent, brittle materials such imaging allows monitoring of multiple resultant processes such as shockwaves, induced stress, crack, and others. We present an optical system for such imaging and examples of several studies completed. Imaging shockwaves produced from impulsive absorption of intense light provides insight into shockwave speed and intensity. Imaging of crack evolution over time allows for understanding of the driving forces behind crack initiation and growth. Time-resolved imaging of visible emissions provides a timescale of radiative relaxation mechanisms and images the extension of cracks during and following bursts of multiple ultrafast pulses helps to understand the enhancement of crack growth under pulse bursts.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2685245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many damage morphologies are possible following irradiation of materials with an intense laser beam. We present ultrafast time-resolved microscopic imaging of materials immediately following laser-matter interaction. In the case of transparent, brittle materials such imaging allows monitoring of multiple resultant processes such as shockwaves, induced stress, crack, and others. We present an optical system for such imaging and examples of several studies completed. Imaging shockwaves produced from impulsive absorption of intense light provides insight into shockwave speed and intensity. Imaging of crack evolution over time allows for understanding of the driving forces behind crack initiation and growth. Time-resolved imaging of visible emissions provides a timescale of radiative relaxation mechanisms and images the extension of cracks during and following bursts of multiple ultrafast pulses helps to understand the enhancement of crack growth under pulse bursts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用皮秒时间分辨显微成像技术监测非线性吸收后的冲击波和裂纹
用强激光束照射材料后,可能会出现多种损伤形态。我们展示了激光与物质相互作用后材料的超快时间分辨显微成像。对于透明的脆性材料,这种成像可以监测多种结果过程,如冲击波、诱导应力、裂纹等。我们将介绍用于此类成像的光学系统以及已完成的几项研究的实例。通过对脉冲吸收强光产生的冲击波进行成像,可以深入了解冲击波的速度和强度。通过对裂纹随时间演变的成像,可以了解裂纹产生和增长背后的驱动力。对可见光辐射的时间分辨成像提供了辐射弛豫机制的时间尺度,对多个超快脉冲爆发期间和之后的裂纹扩展成像有助于了解脉冲爆发下裂纹增长的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
All-glass metasurface laser optics for lensing, antireflections, and waveplates Laser-induced damage of dielectric-enhanced surface-modified single-point-diamond-turned Al-6061 multiband mirrors Optical damage considerations in the design of the matter in extreme condition upgrade (MEC-U) laser systems Broadband, 920-nm mirror thin film damage competition Temporally and spatially resolved photoluminescence of laser-induced damage sites of fused silica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1