A novel approach for determining coconut drink adulteration by means of laser light backscattering imaging

Q3 Agricultural and Biological Sciences Progress in Agricultural Engineering Sciences Pub Date : 2023-11-24 DOI:10.1556/446.2023.00082
Hoa Xuan Mac, Nga Thi Thanh Ha, Lien Le Phuong Nguyen, L. Baranyai
{"title":"A novel approach for determining coconut drink adulteration by means of laser light backscattering imaging","authors":"Hoa Xuan Mac, Nga Thi Thanh Ha, Lien Le Phuong Nguyen, L. Baranyai","doi":"10.1556/446.2023.00082","DOIUrl":null,"url":null,"abstract":"In this work, the simulated adulteration of coconut drink by dilution with water was investigated using laser-light backscattering (LLB) imaging. The laser vision system consisted of six low power laser modules, emitting 1 mm diameter beams at wavelengths of 532, 635, 780, 808, 850 and 1,064 nm. The backscattering images were acquired by a grey scale camera with 12 bit resolution. Eight parameters were extracted to describe the backscattering profile. The methods of linear discriminant analysis (LDA) and partial least squares (PLS) regression were performed on LLB parameters for classifying and predicting dilution level of adulterated coconut drink samples. Based on the results, LLB signals responded sensitively to adulteration. LDA results showed that adulterated samples were correctly recognized with accuracies between 60 and 100%. PLS models were able to estimate the adulteration level of samples with coefficients of determination of 0.57–0.97 in validation. This result demonstrated the potential of laser-light backscattering imaging as a rapid and non-destructive optical technique for evaluation of coconut drink adulteration.","PeriodicalId":20837,"journal":{"name":"Progress in Agricultural Engineering Sciences","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Agricultural Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/446.2023.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the simulated adulteration of coconut drink by dilution with water was investigated using laser-light backscattering (LLB) imaging. The laser vision system consisted of six low power laser modules, emitting 1 mm diameter beams at wavelengths of 532, 635, 780, 808, 850 and 1,064 nm. The backscattering images were acquired by a grey scale camera with 12 bit resolution. Eight parameters were extracted to describe the backscattering profile. The methods of linear discriminant analysis (LDA) and partial least squares (PLS) regression were performed on LLB parameters for classifying and predicting dilution level of adulterated coconut drink samples. Based on the results, LLB signals responded sensitively to adulteration. LDA results showed that adulterated samples were correctly recognized with accuracies between 60 and 100%. PLS models were able to estimate the adulteration level of samples with coefficients of determination of 0.57–0.97 in validation. This result demonstrated the potential of laser-light backscattering imaging as a rapid and non-destructive optical technique for evaluation of coconut drink adulteration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过激光光反散射成像确定椰子饮料掺假的新方法
在这项工作中,利用激光-光反散射(LLB)成像技术研究了椰子饮料加水稀释后的模拟掺假情况。激光视觉系统由六个低功率激光模块组成,发射的光束直径为 1 毫米,波长分别为 532、635、780、808、850 和 1,064 纳米。反向散射图像由一台分辨率为 12 位的灰度相机采集。提取了八个参数来描述反向散射轮廓。对 LLB 参数进行线性判别分析(LDA)和偏最小二乘法(PLS)回归,以对掺假椰子饮料样品的稀释程度进行分类和预测。结果表明,LLB 信号对掺假很敏感。LDA 结果显示,掺假样品被正确识别,准确率在 60% 到 100% 之间。PLS 模型能够估算出样品的掺假程度,验证的决定系数为 0.57-0.97。这一结果证明了激光-光反向散射成像技术作为一种快速、无损的光学技术在椰子饮料掺假评估中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Agricultural Engineering Sciences
Progress in Agricultural Engineering Sciences Engineering-Industrial and Manufacturing Engineering
CiteScore
1.80
自引率
0.00%
发文量
6
期刊介绍: The Journal publishes original papers, review papers and preliminary communications in the field of agricultural, environmental and process engineering. The main purpose is to show new scientific results, new developments and procedures with special respect to the engineering of crop production and animal husbandry, soil and water management, precision agriculture, information technology in agriculture, advancements in instrumentation and automation, technical and safety aspects of environmental and food engineering.
期刊最新文献
Enhancing protein extraction from soybean expeller: Exploring the impact of precipitating agents and flour-to-water ratios on functional properties Microwave-assisted extraction of pectin from queen pineapple (Ananas comosus L.) peel Heat, ultrasound, and microwave assisted extraction methods for recovering bioactive components from hawthorn fruit (Crataegus monogyna Jacq.) Influence of various tillage systems and tillage speed on some soil physical properties Sustainable approach for the collection and processing of medicinal and aromatic plants in Hungary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1