Nonlinear Identification and Decoupling Sliding Mode Control of Macro-Micro Dual-Drive Motion Platform with Mechanical Backlash

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Machines Pub Date : 2023-11-23 DOI:10.3390/machines11121044
Shuo Kang, Buyang Zhang, Xing Huang, Rijin Zhong, Shengzhao Huang
{"title":"Nonlinear Identification and Decoupling Sliding Mode Control of Macro-Micro Dual-Drive Motion Platform with Mechanical Backlash","authors":"Shuo Kang, Buyang Zhang, Xing Huang, Rijin Zhong, Shengzhao Huang","doi":"10.3390/machines11121044","DOIUrl":null,"url":null,"abstract":"A macro–micro dual-drive motion platform is a class of key system utilized in ultra-precision instruments and equipment for realizing ultra-high-precision positioning, which relates to the fields of semiconductor manufacturing, ultra-precision testing and machining, etc. Aiming at the ultra-high-precision positioning control problem of macro–micro dual-drive systems containing mechanical backlash, this paper analyzes the combined effect of mechanical coupling and backlash, and proposes a macro–micro compound control strategy. Firstly, the system dynamic model, including mechanical coupling, is established, and a quasi-linear backlash model is also proposed. Secondly, based on the above model, a stepwise nonlinear identification method is proposed to obtain the backlash characteristic online, which is the basis of accurate backlash compensation. Then, for the macro–micro structure containing the backlash, a macro decoupling control method, combined with a micro adaptive integral sliding mode control method and backlash compensation, are designed coordinately to guarantee that the large-stroke macro–micro cooperative motion reaches micron-level accuracy. Moreover, the boundary of the positioning error is adjustable by tuning the controller parameters. Finally, both the simulation and experimental results demonstrate that the proposed identification method can estimate the time-varying backlash precisely in finite time, and the system positioning accuracy can achieve an average 20 μm with long stroke and backlash influence, which is much higher than that using the traditional method and provides theoretical guidance for high-precision positioning control of a class of dual-drive motion platform.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"75 ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121044","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A macro–micro dual-drive motion platform is a class of key system utilized in ultra-precision instruments and equipment for realizing ultra-high-precision positioning, which relates to the fields of semiconductor manufacturing, ultra-precision testing and machining, etc. Aiming at the ultra-high-precision positioning control problem of macro–micro dual-drive systems containing mechanical backlash, this paper analyzes the combined effect of mechanical coupling and backlash, and proposes a macro–micro compound control strategy. Firstly, the system dynamic model, including mechanical coupling, is established, and a quasi-linear backlash model is also proposed. Secondly, based on the above model, a stepwise nonlinear identification method is proposed to obtain the backlash characteristic online, which is the basis of accurate backlash compensation. Then, for the macro–micro structure containing the backlash, a macro decoupling control method, combined with a micro adaptive integral sliding mode control method and backlash compensation, are designed coordinately to guarantee that the large-stroke macro–micro cooperative motion reaches micron-level accuracy. Moreover, the boundary of the positioning error is adjustable by tuning the controller parameters. Finally, both the simulation and experimental results demonstrate that the proposed identification method can estimate the time-varying backlash precisely in finite time, and the system positioning accuracy can achieve an average 20 μm with long stroke and backlash influence, which is much higher than that using the traditional method and provides theoretical guidance for high-precision positioning control of a class of dual-drive motion platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带机械间隙的宏微双驱动运动平台的非线性识别和去耦滑动模式控制
宏微双驱运动平台是超精密仪器设备中用于实现超高精度定位的一类关键系统,涉及半导体制造、超精密测试和加工等领域。针对含有机械反向间隙的宏微双驱系统的超高精度定位控制问题,本文分析了机械耦合和反向间隙的共同作用,提出了宏微复合控制策略。首先,建立了包括机械耦合在内的系统动态模型,并提出了准线性反向间隙模型。其次,在上述模型的基础上,提出了分步非线性识别方法,在线获得反向间隙特性,这是精确反向间隙补偿的基础。然后,针对含有反向间隙的宏微观结构,设计了宏解耦控制方法,结合微观自适应积分滑模控制方法和反向间隙补偿,协调保证大行程宏微观协同运动达到微米级精度。此外,还可通过调节控制器参数来调整定位误差的边界。最后,仿真和实验结果表明,所提出的识别方法能在有限时间内精确估计时变反向间隙,在长行程和反向间隙影响下,系统定位精度可达到平均 20 μm,远高于传统方法,为一类双驱动运动平台的高精度定位控制提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machines
Machines Multiple-
CiteScore
3.00
自引率
26.90%
发文量
1012
审稿时长
11 weeks
期刊介绍: Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.
期刊最新文献
Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations Vibration Research on Centrifugal Loop Dryer Machines Used in Plastic Recycling Processes Novel Design of Variable Stiffness Pneumatic Flexible Shaft Coupling: Determining the Mathematical-Physical Model and Potential Benefits Considerations on the Dynamics of Biofidelic Sensors in the Assessment of Human–Robot Impacts Structural Design with Self-Weight and Inertial Loading Using Simulated Annealing for Non-Gradient Topology Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1