Analysis on the Growth of Shared Bike Users Based on Random Forest Model

Kewei Jiang, Chuanjin Jiang, Wenjun Hou, Yuheng Mo
{"title":"Analysis on the Growth of Shared Bike Users Based on Random Forest Model","authors":"Kewei Jiang, Chuanjin Jiang, Wenjun Hou, Yuheng Mo","doi":"10.56028/aetr.7.1.653.2023","DOIUrl":null,"url":null,"abstract":"By analyzing the data set of hourly rental of shared bikes in Washington, D. C., this paper explores how to achieve the growth of shared bike users based on the methods of data mining and visual exploration. In this paper, machine learning models such as ridge regression, lasso regression, support vector machine regression and random forest regression are mainly selected to predict the needs of shared bike users, and then the random forest regression is verified as the optimal model. The result of this article explores the reasonable scheduling of auxiliary resources in the shared bike industry, improves the utilization rate of bicycle resources.","PeriodicalId":502380,"journal":{"name":"Advances in Engineering Technology Research","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56028/aetr.7.1.653.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By analyzing the data set of hourly rental of shared bikes in Washington, D. C., this paper explores how to achieve the growth of shared bike users based on the methods of data mining and visual exploration. In this paper, machine learning models such as ridge regression, lasso regression, support vector machine regression and random forest regression are mainly selected to predict the needs of shared bike users, and then the random forest regression is verified as the optimal model. The result of this article explores the reasonable scheduling of auxiliary resources in the shared bike industry, improves the utilization rate of bicycle resources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林模型的共享单车用户增长分析
本文通过分析华盛顿特区共享单车时租数据集,基于数据挖掘和可视化探索的方法,探讨如何实现共享单车用户的增长。本文主要选取了脊回归、拉索回归、支持向量机回归和随机森林回归等机器学习模型来预测共享单车用户的需求,然后验证了随机森林回归是最优模型。本文的研究成果探索了共享单车行业辅助资源的合理调度,提高了单车资源的利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Financial Anti-fraud Method based on Machine Learning Algorithms Network Pharmacology Study on the Neurotoxic Mechanism of Acorus tatarinowii Analysis on the Growth of Shared Bike Users Based on Random Forest Model The synthesis of acetone from isobutane with the intermediate of di-tert-butyl peroxide A Blockchain-Based Intelligent Data Management Platform for Power Grid Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1