Yuxuan Xue, Sai Zhong, Kuanwen Wang, Qianrui Dong, Yue Huang, Rui Zhang, Lei Wang, T. Jiang
{"title":"Synthesis of Carboxymethylcellulose–Acrylamide–Montmorillonite Composite Hydrogels for Wastewater Purification","authors":"Yuxuan Xue, Sai Zhong, Kuanwen Wang, Qianrui Dong, Yue Huang, Rui Zhang, Lei Wang, T. Jiang","doi":"10.3390/separations10120582","DOIUrl":null,"url":null,"abstract":"The three-dimensional network and ample pore structure of novel hydrogel materials enable outstanding adsorption performance for pollutants such as methylene blue (MB) and Cr6+ ions in wastewater. In order to develop an environmentally friendly hydrogel with high adsorption performance and low cost, a type of carboxymethyl cellulose (CMC) composite hydrogel was synthesised with montmorillonite (MMT) via chain radical polymerization, which gives it great potential for application in the field of wastewater purification. A series of hydrogel samples were characterised through SEM, FTIR and nitrogen porosimetry analysis, indicating the successful intercalation of MMT nanosheets into the hydrogel crosslinking network. The mass ratio of CMC to MMT, the amounts of adsorbent, the initial concentration of wastes, pH, and the adsorption temperature were investigated and optimised for hydrogel adsorption performance. When the initial concentration of MB is 60 mg/L, pH is 7, the dosage of MB is 0.5 g/L, and the adsorption temperature is 30 °C, the hydrogel sample the highest adsorption capability for MB removal, with an adsorption amount of 112.9 mg/g. When the initial concentration of Cr6+ is 10 mg/L with a pH of 7, the highest adsorption capacity of the hydrogel for Cr6+ removal is 1.35 mg/g. The fitting results of the isothermal models, the kinetic models, internal particle diffusion models and the thermodynamics of the experimental data of the adsorbate adsorption process show that the adsorption of MB by hydrogel is a spontaneous segmented process of multi-layer physical and chemical adsorption. Additionally, the adsorption of Cr6+ ions by hydrogel is a spontaneous segmented process of multi-layer physical adsorption.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"55 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10120582","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The three-dimensional network and ample pore structure of novel hydrogel materials enable outstanding adsorption performance for pollutants such as methylene blue (MB) and Cr6+ ions in wastewater. In order to develop an environmentally friendly hydrogel with high adsorption performance and low cost, a type of carboxymethyl cellulose (CMC) composite hydrogel was synthesised with montmorillonite (MMT) via chain radical polymerization, which gives it great potential for application in the field of wastewater purification. A series of hydrogel samples were characterised through SEM, FTIR and nitrogen porosimetry analysis, indicating the successful intercalation of MMT nanosheets into the hydrogel crosslinking network. The mass ratio of CMC to MMT, the amounts of adsorbent, the initial concentration of wastes, pH, and the adsorption temperature were investigated and optimised for hydrogel adsorption performance. When the initial concentration of MB is 60 mg/L, pH is 7, the dosage of MB is 0.5 g/L, and the adsorption temperature is 30 °C, the hydrogel sample the highest adsorption capability for MB removal, with an adsorption amount of 112.9 mg/g. When the initial concentration of Cr6+ is 10 mg/L with a pH of 7, the highest adsorption capacity of the hydrogel for Cr6+ removal is 1.35 mg/g. The fitting results of the isothermal models, the kinetic models, internal particle diffusion models and the thermodynamics of the experimental data of the adsorbate adsorption process show that the adsorption of MB by hydrogel is a spontaneous segmented process of multi-layer physical and chemical adsorption. Additionally, the adsorption of Cr6+ ions by hydrogel is a spontaneous segmented process of multi-layer physical adsorption.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization